14 research outputs found

    Variability comparison of simultaneous brain near-infrared spectroscopy and functional magnetic resonance imaging during visual stimulation

    No full text
    Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional magnetic resonance imaging (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We concluded that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties, which may be better accounted for by emerging NIRS technolog

    Functional near infrared optical imaging in cognitive neuroscience: an introductory review

    No full text
    Cognitive neuroscience is a multidisciplinary field focused on the exploration of the neural substrates underlying cognitive functions; the most remarkable progress in understanding the relationship between brain and cognition has been made with functional brain imaging. Functional near infrared (fNIR) spectroscopy is a non-invasive brain imaging technique that measures the variation of oxygenated and deoxygenated haemoglobin at high temporal resolution. Stemming from the first pioneering experiments, the use of fNIR spectroscopy in cognitive neuroscience has constantly increased. Here, we present a brief review of the fNIR spectroscopy investigations in the cognitive neuroscience field. The topics discussed encompass the classical issues in cognitive neuroscience, such as the exploration of the neural correlates of vision, language, memory, attention and executive functions. Other relevant research topics are introduced in order to show the strengths and the limitations of fNIR spectroscopy, as well as its potential in the biomedical field. This review is intended to provide a general view of the wide variety of optical imaging applications in the field of cognitive neuroscience. The increasing body of studies and the constant technical improvement suggest that fNIR spectroscopy is a versatile and promising instrument to investigate the neural correlates of human cognition

    Fluid Dynamics of Mantle Plumes

    No full text
    corecore