1,827 research outputs found

    The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms

    Get PDF
    ‘Bioconvection’ is the name given to pattern-forming convective motions set up in suspensions of swimming micro-organisms. ‘Gyrotaxis’ describes the way the swimming is guided through a balance between the physical torques generated by viscous drag and by gravity operating on an asymmetric distribution of mass within the organism. When the organisms are heavier towards the rear, gyrotaxis turns them so that they swim towards regions of most rapid downflow. The presence of gyrotaxis means that bioconvective instability can develop from an initially uniform suspension, without an unstable density stratification. In this paper a continuum model for suspensions of gyrotactic micro-organisms is proposed and discussed; in particular, account is taken of the fact that the organisms of interest are non-spherical, so that their orientation is influenced by the strain rate in the ambient flow as well as the vorticity. This model is used to analyse the linear instability of a uniform suspension. It is shown that the suspension is unstable if the disturbance wavenumber is less than a critical value which, together with the wavenumber of the most rapidly growing disturbance, is calculated explicitly. The subsequent convection pattern is predicted to be three-dimensional (i.e. with variation in the vertical as well as the horizontal direction) if the cells are sufficiently elongated. Numerical results are given for suspensions of a particular algal species (Chlamydomonas nivalis); the predicted wavelength of the most rapidly growing disturbance is 5–6 times larger than the wavelength of steady-state patterns observed in experiments. The main reasons for the difference are probably that the analysis describes the onset of convection, not the final, nonlinear steady state, and that the experimental fluid layer has finite depth

    Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows

    Get PDF
    Analytic approximations are obtained to solutions of the steady Fokker-Planck equation describing the probability density functions for the orientation of dipolar particles in a steady, low-Reynolds-number shear flow and a uniform external field. Exact computer algebra is used to solve the equation in terms of a truncated spherical harmonic expansion. It is demonstrated that very low orders of approximation are required for spheres but that spheroids introduce resolution problems in certain flow regimes. Moments of the orientation probability density function are derived and applications to swimming cells in bioconvection are discussed. A separate asymptotic expansion is performed for the case in which spherical particles are in a flow with high vorticity, and the results are compared with the truncated spherical harmonic expansion. Agreement between the two methods is excellent

    PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4(+) T cell transcriptomal molecular signatures.

    Get PDF
    Protective efficacy of Bacillus Calmette-Guérin (BCG) may be affected by the methods and routes of vaccine administration. We have studied the safety and immunogenicity of oral (PO) and/or intradermal (ID) administration of BCG in healthy human subjects. No major safety concerns were detected in the 68 healthy adults vaccinated with PO and/or ID BCG. Although both PO and ID BCG could induce systemic Th1 responses capable of IFN-γ production, ID BCG more strongly induced systemic Th1 responses. In contrast, stronger mucosal responses (TB-specific secretory IgA and bronchoalveolar lavage T cells) were induced by PO BCG vaccination. To generate preliminary data comparing the early gene signatures induced by mucosal and systemic BCG vaccination, CD4(+) memory T cells were isolated from subsets of BCG vaccinated subjects pre- (Day 0) and post-vaccination (Days 7 and 56), rested or stimulated with BCG infected dendritic cells, and then studied by Illumina BeadArray transcriptomal analysis. Notably, distinct gene expression profiles were identified both on Day 7 and Day 56 comparing the PO and ID BCG vaccinated groups by GSEA analysis. Future correlation analyses between specific gene expression patterns and distinct mucosal and systemic immune responses induced will be highly informative for TB vaccine development.Mucosal Immunology advance online publication 30 August 2017; doi:10.1038/mi.2017.67

    Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation

    Get PDF
    We develop a theory for describing frictional drag in bilayer systems with in-plane periodic potential modulations, and use it to investigate the drag between bilayer systems in which one of the layers is modulated in one direction. At low temperatures, as the density of carriers in the modulated layer is changed, we show that the transresistivity component in the direction of modulation can change its sign. We also give a physical explanation for this behavior.Comment: 4 pages, 4 figure

    The influence of fear of falling on the control of upright stance across the lifespan

    Get PDF
    Background Standing at height, and subsequent changes in emotional state (e.g., fear of falling), lead to robust alterations in balance in adults. However, little is known about how height-induced postural threat affects balance performance in children. Children may lack the cognitive capability necessary to inhibit the processing of threatand fear-related stimuli, and as a result, may show more marked (and perhaps detrimental) changes in postural control compared to adults. This work explored the emotional and balance responses to standing at height in children and compared responses to young and older adults. Methods Children (age: 9.7 ± 0.8 years, n=38), young adults (age: 21.8 ± 4.0 years, n=45) and older adults (age: 73.3 ± 5.0 years, n=15) stood in bipedal stance in two conditions: on the floor and 80cm above ground. Centre of pressure (COP) amplitude (RMS), frequency (MPF) and complexity (sample entropy) were calculated to infer postural performance and strategy. Emotional responses were quantified by assessing balance confidence, fear of falling and perceived instability. Results Young and older adults demonstrated a postural adaptation characterised by increased frequency and decreased amplitude of the COP, in conjunction with increased COP complexity (sample entropy). In contrast, children demonstrated opposite patterns of changes: they exhibited an increase in COP amplitude and decrease in both frequency and complexity when standing in a hazardous situation. Significance Children and adults adopted different postural control strategies when standing at height. Whilst young and older adults exhibited a (potentially protective) “stiffening” response to a height-induced threat, children demonstrated a (potentially maladaptive) ineffective postural adaptation strategy. These observations expand upon existing postural threat related research in adults, providing important new insight into understanding how children respond to standing in a hazardous situation

    Entanglement and Spontaneous Symmetry Breaking in Quantum Spin Models

    Full text link
    It is shown that spontaneous symmetry breaking does not modify the ground-state entanglement of two spins, as defined by the concurrence, in the XXZ- and the transverse field Ising-chain. Correlation function inequalities, valid in any dimensions for these models, are presented outlining the regimes where entanglement is unaffected by spontaneous symmetry breaking

    Progress in the Preclinical Discovery and Clinical Development of Class I and Dual Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors

    Get PDF
    The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer

    Entanglement in the One-dimensional Kondo Necklace Model

    Get PDF
    We discuss the thermal and magnetic entanglement in the one-dimensional Kondo necklace model. Firstly, we show how the entanglement naturally present at zero temperature is distributed among pairs of spins according to the strength of the two couplings of the chain, namely, the Kondo exchange interaction and the hopping energy. The effect of the temperature and the presence of an external magnetic field is then investigated, being discussed the adjustment of these variables in order to control the entanglement available in the system. In particular, it is indicated the existence of a critical magnetic field above which the entanglement undergoes a sharp variation, leading the ground state to a completely unentangled phase.Comment: 8 pages, 13 EPS figures. v2: four references adde

    Frictional drag between non-equilibrium charged gases

    Full text link
    The frictional drag force between separated but coupled two-dimensional electron gases of different temperatures is studied using the non-equilibrium Green function method based on the separation of center-of-mass and relative dynamics of electrons. As the mechanisms of producing the frictional force we include the direct Coulomb interaction, the interaction mediated via virtual and real TA and LA phonons, optic phonons, plasmons, and TA and LA phonon-electron collective modes. We found that, when the distance between the two electron gases is large, and at intermediate temperature where plasmons and collective modes play the most important role in the frictional drag, the possibility of having a temperature difference between two subsystems modifies greatly the transresistivity.Comment: 8figure
    • 

    corecore