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Abstract. Analytic approximations are obtained to solutions of the steady
Fokker-Planck equation describing the probability density functions for the
orientation of dipolar particles in a steady, low-Reynolds-number shear flow
and a uniform external field. Exact computer algebra is used to solve the
equation in terms of a truncated spherical harmonic expansion. It is demon-
strated that very low orders of approximation are required for spheres but
that spheroids introduce resolution problems in certain flow regimes. Mo-
ments of the orientation probability density function are derived and applica-
tions to swimming cells in bioconvection are discussed. A separate asymptotic
expansion is performed for the case in which spherical particles are in a flow
with high vorticity, and the results are compared with the truncated spherical
harmonic expansion. Agreement between the two methods is excellent.

Key words: Suspensions — Fokker-Planck Equation — Dipolar particles —
Orientation distributions — Bioconvection

1 Introduction

In this paper, we consider the orientation probability density function (p.d.f.),
f (p), for a spheroidal particle with an asymmetric mass distribution, immersed
in a general flow field. With a biological application to bioconvection patterns
in mind, we assume that we can model all of the random fluctuations in
orientation caused by external factors and by variations in particle geometry
(i.e. variations in shape and variations due to the waving of cilia or flagella) as
if they were generated by rotational Brownian motion and can be represented
by one coefficient called the effective rotational diffusivity, D

r
. Jones et al.

(1994) investigate the explicit effects of bi-flagellated swimming and conclude
that only small quantitative changes are necessary in the above model. For



sufficiently small, widely-spaced particles, the flows are locally linear and
particle interactions are negligible, and Leal and Hinch (1972) have shown
that the orientation p.d.f. satisfies a Fokker-Planck equation on the unit
sphere,

Lf

Lt
#+ · (pR f )"D

r
+ 2f , (1)

where the torque balance, from Leal and Hinch (1972) and Hinch and Leal
(1972) (but initially derived by Jeffrey 1922), is written as

p5 "
1

2B
[k!(k · p)p]#

1

2
X'p#a

0
p · E · (I!pp) . (2)

Here, + is the gradient operator in p-space, a
0

is the particle eccentricity, B is
a reorientation time scale, balancing external and viscous torques, k is a verti-
cal unit vector, X is the local fluid vorticity and E is the local rate-of-strain
tensor. We can neglect the Lf/Lt term in (1) if we can also assume that the time
scales for variations in the flow are much longer than the particle orientation
times, D~1

r
and B, so that the particle distribution has sufficient time to

equilibriate to a quasi-steady state. The particle eccentricity is important
when considering straining flows. For the case where a

0
"0, the particle is

spherical and is not affected by straining motion in the fluid. The first term on
the right hand side of (2) represents the gravitational torque due to the
asymmetric mass distribution (Pedley and Kessler 1992) but could also
represent any external mechanical torque on dipolar particles within an
external field (Brenner and Weissman 1972). An application that uses similar
expressions is also found in flow visualization using reflective flakes (see Savas
1985).

X and E are non-dimensionalised with respect to a typical vorticity scale,
X, such that x"X/X and e"E/X, and, after some algebra (Pedley and
Kessler 1990), Equations (1) and (2) give

k · +f!2(k · p) f#gx · (p'+f )#2ga
0
[p · e · +f!3p · e · pf ]"j~1+ 2 f (3)

where1

j"
1

2D
r
B

and g"BX . (4)

Hill et al. (1989) calculated j for C. nivalis to be approximately equal to 2.2
from measurements of cell diffusivities.

Bioconvection occurs as a result of the passive or active orientation
mechanisms of many microscopic swimming individuals and is realised as the

—————
1Note: j differs by a factor of 1

2
omitted in error in Pedley and Kessler (1990) but corrected in

Pedley and Kessler (1992).
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bulk motion of a suspension of such individuals on much larger scales than
the dimensions of the micro-organisms (Platt 1961; Childress et al. 1975;
Kessler 1986; Pedley and Kessler 1992; Bees and Hill 1997a), resulting in
patterns reminiscent of thermal convection. Therefore, it requires modelling at
both microscopic and macroscopic scales to understand the system fully. The
micro-organisms in question are bottom heavy and, hence, negatively
gravitactic in that on average they swim upwards. However, if they are denser
than the ambient fluid then aggregations of the cells at an upper boundary
can cause overturning. Additionally, another mechanism for instability that
does not require an upper boundary is often observed in cultures of some
micro-organisms (such as the alga Chlamydomonas nivalis). The mechanism is
termed gyrotaxis, after Kessler (1984), and is caused by viscous torques acting
on the individual cells, thus influencing their average swimming directions.
A region of downwelling flow can tip cells’ axes away from the vertical so that
they swim towards the centre of the downwelling region. An instability is
generated if the cells are denser than the surrounding fluid, thus causing the
sinking fluid to sink even faster and attract even more cells.

In a general fluid the cells have a mean swimming direction, given by the
ensemble average of the orientation vector, SpT, and their stochastic behav-
iour can be modelled using a tensorial diffusivity, D. Both these quantities are
functions of space and time. The cell flux due to swimming, J

s
, is given by

J
s
"n»

s
SpT!D · +n (5)

where n"n(x, t) is the cell concentration and »
s
is the mean cell swimming

speed. Higher moments of the orientational p.d.f. are used to calculate D
as will be discussed in Sect. 3. Earlier models of bioconvection made an ad
hoc approximation for the diffusivity due to the variations in the micro-
organisms’ swimming but Pedley and Kessler (1990) demonstrated the im-
portance of a more rational approach. They showed that the probability
density function, f (p), for a gyrotactic micro-organism with swimming direc-
tion p, satisfies a steady Fokker-Planck equation, given by (3), where
B"kao/2hog is now interpreted as the gyrotactic orientation parameter, k
is the fluid viscosity, h is the centre of mass offset from the geometrical centre,
o is the density of the cells, g is the acceleration due to gravity and ao is
the dimensionless resistance coefficient for rotation about an axis perpen-
dicular to p (Pedley and Kessler 1990, Appendix A). Brenner and Weissman
(1972) studied a similar form of equation when investigating the rheology of
a dilute suspension of dipolar spherical particles in an external field. They
obtained good results by expanding in terms of spherical harmonics and using
numerical techniques to solve a truncated set of equations for the coefficients.
Strand and Kim (1992) have used spherical harmonic expansions for dipolar
non-spherical particles in an external field. The authors of both papers used
their solutions to investigate the rheological properties of suspensions of
particles.

We also adopt this approach but employ the powerful tools of computer
algebra. This enables us to solve the truncated set of simultaneous equations
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for the coefficients of the spherical harmonics exactly, thus obtaining ana-
lytical approximations. Moreover, we derive expressions for the moments
of the particle orientation and, hence, the mean cell swimming direction
and cell diffusivity tensor, used in models of bioconvection, without fur-
ther approximation. In many ways, spherical harmonics are the natural
eigenfunctions to use in such an expansion, exemplified by the compact
expressions for the above two quantities. Only the first five coefficients in the
spherical harmonic expansion are required (Bees 1996). The manageable
expressions obtained from this work have been applied to non-linear studies
of bioconvection which will be presented in another paper (Bees and Hill
1997b).

In this paper, particles are suspended in a fluid whose flow is restricted to
being two-dimensional in a vertical plane so that the vorticity vector is
horizontal, although in Sect. 4 it is shown that a three-dimensional flow with
no vertical component of vorticity can be reduced to essentially the same
form. It is still essential to model the particle orientation on a full sphere
rather than on a circle as there is a non-zero probability of particles orientated
in a direction out of the plane of flow. A spherical polar coordinate system
(r, h, /), is used together with an expansion in terms of cosm/Pm

n
(cos h) where

Pm
n
(x) are associated Legendre polynomials. By recursively applying a set of

identities for spherical harmonics, using the computer algebra package Maple
and truncating at order R, a set of R(R#3)/2 equations in as many unknowns
is generated, together with a normalisation condition. Maple is again em-
ployed to solve this set of equations using exact arithmetic (see Appendix C of
Bees 1996 for the Maple code).

2 Expansion in spherical harmonics for two-dimensional flows

The orientation of particles is specified using a spherical polar coordinate
system on a unit sphere. The azimuthal angle, h, and meridonal angle, /, are
chosen such that the non-dimensional vorticity, given by x"uj, is perpen-
dicular to the plane in which /"0 and h"0 indicates an upwards pointing
particle (Fig. 1). The particle orientation, p, and unit vectors /K and hK are given
in terms of Cartesian axes i, j and k, where k is vertical, by

p"A
sin h cos/

sin h sin/

cos h B, hK "A
cos h cos/

cos h sin/

!sin h B and /K "A
!sin /

cos/

0 B . (6)

Hence,

x · p'hK "u cos /
(7)

x · p'/K "!u cos h sin/ .
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Fig. 1. The choice of coordinate system on a sphere

The non-dimensional rate-of-strain tensor, e, can be written as

e"A
e
11

0 e
13

0 0 0

e
13

0 !e
11
B (8)

and then

p · e · p"e
11

[1
4

(cos 2/#3) (1!cos 2h)!1]#e
13

sin 2h cos/

p · e · hK "e
11

[1
4

(cos 2/#3) sin 2h]#e
13

cos 2h cos/ (9)

p · e ·/K "e
11

[!1
2

sin 2/ sin h]!e
13

cos h sin/ .

Hence, the Fokker-Planck Equation (3) becomes

j~1

sin h
Lh(sin hLh f )#

j~1

sin2 h
L2
(
f#sin hLh f#2 cos hf

"gAu cos /Lh f!u
cos h
sin h

sin/L
(
f B

#2a
0
gC(e11(cos2/#1) sin h cos h#e

13
(cos2 h!sin2 h) cos/)Lh f

!Ae11 cos/ sin/#e
13

sin/
cos h
sin h BL( f

!3Ae11(sin2 h cos2 /!cos2 h)#2e
13

sin h cos h cos/B fD . (10)
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For a two dimensional flow, the particle orientation p.d.f. will be sym-
metric about the flow plane and only even spherical harmonics in / are
needed. Expanding f in spherical harmonics gives

f"
=
+
n/0

n
+

m/0

Fm
n

(11)

where we define for ease of writing

Fm
n
(h, /),Rm

n
(/)Pm

n
(cos h),Am

n
cosm/Pm

n
(x),Am

n
Qm

n
(h, /) . (12)

Here x,cos h, the coefficients Am
n

depend on the flow field and Pm
n

are
associated Legendre polynomials (Arfken 1985).

Substituting this series into Equation (10), gives

+
m,n

Mj~1Fm
n
[!n(n#1)]!Rm

n
Pm
n
@ sin2 h#2 cos hFm

n
N

"+
m,n
G!g(u cos/ sin hRm

n
Pm

n
@#u cot h sin/Rm

n
@Pm

n
)

!2a
0
gC(e11 (cos2/#1)sin2 h cos h

#e
13

(cos2 h!sin2 h)cos/ sin h)Rm
n
Pm
n
@

#(e
11

cos/ sin /#e
13

sin/ cot h)Rm
n
@Pm

n

#3(e
11

(sin2 h cos2/!cos2 h)#2e
13

sin h cos h cos/)Rm
n
Pm
nDH (13)

where a prime denotes differentiation with respect to the dependent variable.
The normalisation condition that f integrates to one over the surface of the

sphere implies that

A0
0
"

1

4n
. (14)

3 Calculating the moments

Here we shall derive exact expressions for the first and second moments of
p (Mardia 1972) and describe an application directly relevant to bioconvec-
tion. Firstly, consider the mean orientation SpT. If S represents the surface of
a unit sphere then

SpT"P
S A

sin h cos/

sin h sin/

cos h B f (h, /) dS,P
S A

Q1
1

0

Q0
1
B f (h, /) dS (15)
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and thus we require the integrals of :
S
Q1

1
f dS and :

S
Q0

1
f dS. Using Equation

(11) and the identities

P
S

Qm
n
Qm@

n@
dS"dm

m@dnn@
2n

2n#1

(n#m)!

(n!m)!
(16)

for n, n@7m, m@"1, 2,2 and

P
S

Q0
n
Qm@

n@
dS"d0

m@dnn@
4n

2n#1
, (17)

we find that

SpT"
4n
3 A

A1
1

0

A0
1
B . (18)

Similarly, using the identities

sin2 h cos2/"1
2
sin2 h(1#cos 2/)"1

3
Q0

0
!1

3
Q0

2
#1

6
Q2

2
, (19)

sin h cos h cos/"1
3
Q1

2
, (20)

cos2 h"2
3
Q0

2
#1

3
Q0

0
(21)

and

sin2 h sin2 /"1
2
sin2 h (1#cos 2/)"1

3
Q0

0
!1

3
Q0

2
!1

6
Q2

2
(22)

gives the second moment as

SppT"nA
4
3

A0
0
! 4

15
A0

2
#8

5
A2

2
0 4

5
A1

2
0 4

3
A0

0
! 4

15
A0

2
!8

5
A2

2
0

4
5

A1
2

0 8
15

A0
2
#4

3
A0

0
B . (23)

An application of these expressions arises in the modelling of bioconvec-
tion. If f (p) is taken to be the p.d.f. for a cell orientation of p then SpT
represents the mean cell swimming direction (although it is not a unit vector).

Another quantity of interest is the spread of cell orientations at a point in
the flow and hence the spread of possible trajectories. The cell diffusion tensor
is defined as

D(t)"P
=

0

SV
r
(t)V

r
(t!t@)T dt@ , (24)

where V
r
is the velocity of a cell relative to its mean value. The expression for

D is, of course, hard to calculate as it requires a knowledge of all previous cell
velocities and, hence, we are forced to make an approximation for the sake of
simplicity. Following Pedley and Kessler (1990), we assume that it takes a cell
q seconds to settle to a preferred direction (the direction correlation time).
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q may vary slightly with other parameters, such as g or j, but in this paper we
assume that it is constant and concentrate on the tensorial structure of D.
Hence,

D"q(SVVT!SVT2)"q(j, g)Var(V ) , (25)

where V is the cell swimming velocity. Assuming that the swimming speed, »,
and swimming direction, p, are independent random variables, we can write
V"»p. If the mean cell swimming speed S»T"»

s
, then

D"»2
s
q(j, g)A

S»2T
»2

s

SppT!SpT2B . (26)

Varying the ratio

N"

S»2T
»2

s

(27)

changes the nature of the diffusion tensor. The data of Hill and Häder (1997)
give N as bounded by 1.15 and 1.45 for the swimming, single-celled alga C.
nivalis. Substituting for the moments of p from Equations (18) and (23) yields

D
N»2

s
qn

"

A
4
3
A0

0
! 4

15
A0

2
#8

5
A2

2
!16n

9N
(A1

1
)2 0 4

5
A1

2
!16n

9N
A1

1
A0

1
0 4

3
A0

0
! 4

15
A0

2
!8

5
A2

2
0

4
5
A1

2
!16n

9N
A1

1
A0

1
0 8

15
A0

2
#4

3
A0

0
!16n

9N
(A0

1
)2B .

(28)

Thus the only expressions required are those for the five coefficients
A0

1
, A1

1
, A0

2
, A1

2
and A2

2
in the spherical harmonic expansion.

4 Three-dimensional flows

In some circumstances, for example when the observed bioconvection pat-
terns possess particular symmetries, it may be reasonable to assume that there
is no component of vorticity in the vertical direction. If we also assume that
a
0
"0 so that the rate-of-strain in the fluid does not affect the particle

orientation then we can construct an approximation to the diffusion tensor,
similar to the above, for use in three-dimensional applications. In particular,
the flow field, u, can be written in terms of a poloidal velocity field, F, such that

u"+'+'(Fk) . (29)

Locally we rotate the ‘‘plane of solution’’ about a vertical axis, so that x is
always perpendicular to the plane /"0. The Fokker-Planck equation can be
expanded in terms of surface spherical harmonics, as before, and can then be
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rotated back to the original coordinate system in the integral definitions of
SpT and D.

We define the angle of rotation, t, to be

t"arctanA
u

1
u

2
B , (30)

where

x"A
u

1
u

2
0 B (31)

and put u2"u2
1
#u2

2
. Then

SpT"P
S

f (h, /!t) p dS , (32)

where f is evaluated in the rotated frame. Putting /M "/!t then

SpT"P
S

f (h, /M ) A
sin h cos(/M #t)

sin h sin(/M #t)

cos h B dS . (33)

The trigonometric functions cos(/M #t) and sin(/M #t) in (33) can be ex-
panded and hence

SpT"P
S

f (h, /M ) A
Q1

1
cost

Q1
1
sint

Q0
1

B dS , (34)

which, when f is written as a sum of spherical harmonics as in Sect. 3, implies
that

SpT"
4

3
n A

A1
1
cost

A1
1
sint

A0
1

B (35)

in the original coordinates. In a similar way

SppT"P
S

f (h, /M )M dS (36)

where M is equal to

A
sin2hcos2(/M #t) sin2h cos(/M #t)sin(/M #t) cosh sinh cos(/M #t)

sin2hcos(/M #t) sin(/M #t) sin2h sin2(/M #t) cosh sinh sin(/M #t)

cosh sinhcos(/M #t) cosh sinh sin(/M #t) cos2h B .

(37)
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Substituting the surface spherical harmonics for f, expanding and evaluating,
gives

SppT"nA
4
3
A0

0
! 4

15
A0

2
#8

5
A2

2
cos2t 8

5
A2

2
sin 2t 4

5
A1

2
cost

8
5
A2

2
sin2t 4

3
A0

0
! 4

15
A0

2
!8

5
A2

2
cos2t 4

5
A1

2
sint

4
5
A1

2
cost 4

5
A1

2
sint 8

15
A0

2
#4

3
A0

0B .

(38)

The A’s are all functions of u"Ju2
1
#u2

2
and by using tant"u

1
/u

2
we can write cost"u

1
/u, sint"u

2
/u, cos 2t"u2

2
!u2

1
/u2 and

sin 2t"2u
1
u

2
/u2. As before, these expressions can be used to calculate

Var(V ) and, hence, D in Equation (26).

5 Simplification

The expansion of the Fokker-Planck Equation (13) is split into three parts.
Gm

n
will be used to signify the summand for intermediate values of m, and

F0
n

and F1
n

will be used to signify the summands for the special cases when
m"0 and 1. Thus the complete expansion of Equation (13) can be written as

R
+
n/0

F0
n
#

R
+
n/1

F1
n
#

R
+
n/2

n
+

m/2

Gm
n
"0 , (39)

where R is the order of the approximation and the spherical harmonic
coefficients, Ap

q
(see Equation (12)), are zero if p'q, p(0, q'R or q(0.

We consider Equation (13) one term at a time, trying at each stage to
express the relevant term as an expression which is linear in Qm

n
with simple

non-trigonometric coefficients. The operators and identities listed in the
Appendix will be employed. Henceforth, we set x,cos h and make use of the
shorthand Sm,sin m/ and Cm,cos m/.

5.1 Left-hand side

The first term on the left hand side of (13) is in the correct form. Applying
the operator X

ssp
(defined in the Appendix) to the second term, gives

terms involving Qm
nB1

. Similarly applying X
c

to the third term gives terms
involving Qm

nB1
.

5.2 Right-hand side: vorticity terms

The first term on the right hand side contains C1 so we make use of the
identity X

cos
and turn the Rm

n
into Am

n
(Cm~1#Cm`1) /2. Now we convert the
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Pm
n
@ terms into terms like PmB1

n
. This proves possible with the identities

X
spu

and X
spd

. However, there appears to be an undesirable term,

$Pm
n
mx/J1!x2. If this term were to remain in the equation, then it would

lead to the problematic integral

P
1

1!x2
Pm
n
(x) Pm

p
(x) dx (40)

which, on explicit evaluation, gives not one delta function in terms of n and p,
but an infinite series of delta functions in n and p since

P
1

1!x2
Pm

n
(x)Pm

p
(x) dx"G

1

m

(min(p, n)#m)!

(min(p, n)!m)!
p#n even

0 otherwise .

(41)

The integral is unusual in that only min(p, n) is relevant and not max(p, n)
(Appendix B, Bees 1996). This procedure would ultimately give an infinite set
of infinite-length recursion relations for the Am

n
. However, these terms com-

pletely cancel out with similar terms produced by the second term on the right
hand side, after application of the identity X

4*/
. Thus, the vorticity terms

become

ugAm
n

2
(!Qm`1

n
#(n!m#1) (n#m)Qm~1

n
) . (42)

5.3 Right-hand side: rate-of-strain terms

These terms naturally fall into two groups: the third, fifth and seventh terms
multiplied by e

11
, and the fourth, sixth and eighth terms multiplied by e

13
.

Using the identities X
#04

and X
4*/

, the terms in the first group can be written in
terms of CmB2 and Cm , with the ‘‘undesirable’’ terms always cancelling.

5.4 Summand: intermediate terms

The whole of Equation (13), for intermediate values of m, finally becomes

Gm
n
:"j~1n (n#1)Am

n
Qm

n
#Am

n
X

ssp
(Qm

n
)!2Am

n
X

c
(Qm

n
)

#

ug
2

Am
n
(!Qm`1

n
#(n!m#1) (n#m)Qm~1

n
)

!2a
0
ge

11
Am

n C!
1

4
(n!m#1) (m#n)X

c
(X

sd
(Qm~1

n
))

#

3!m

4
X

sd
(X

sd
(Qm

n
))#

1

4
X

c
(X

su
(Qm`1

n
))
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#

3#m

4
X

su
(X

su
(Qm

n
))#

3

2
X

ss
(Qm

n
)!3X

c
(X

c
(Qm

n
))

#

3

2

1

2n#1
X

c
((n#m) (n#1)Qm

n~1
!n (n!m#1)Qm

n`1
)D

!2a
0
ge

13
Am

n CXc
(X

c
(!(n!m#1) (n#m)Qm~1

n
#Qm`1

n
))

!

1

2
(!(n!m#1) (n#m)Qm~1

n
#Qm`1

n
)

!mX
c
(X

sd
(Qm

n
)!X

su
(Qm

n
))#

3

2n#1
X

c
((n#m)(n#m!1)Qm~1

n~1

!(n!m#1)(n!m#2)Qm~1
n`1

#Qm`1
n`1

!Qm`1
n~1

)D , (43)

which will be summed over m and n later.

5.5 Special cases: extremal terms

There are two special cases connected with the finite order of the expansion.
One concerns the upper extreme of the expansion and the other concerns
special cases around the lower extreme. The first is easily dealt with by setting
all coefficients of order greater than the truncation order to zero. In the second
case, note that Am

n
"0 if m, n(0 or n7m, and such terms should not appear

in Equation (43). Consider first the case of m"0:

S1S0"1
2
C~1!1

2
C1"0 (44)

and
C1C0"1

2
C~1#1

2
C1"C1 , (45)

in which Cm"cosm/ and Sm"sinm/. These indicate how the definitions
(116) and (114) for X

#04
and X

4*/
need to be modified. In general, if m"0 then

terms in Qp
q
where p is positive are doubled and where p is negative are set to

zero. Terms where p"0 are unchanged. This gives us the following relations
for all values of n, which will be summed over n later:

F0
n
:"j~1n(n#1)A0

n
Q0

n
#A0

n
X

ssp
(Q0

n
)!2A0

n
X

c
(Q0

n
)!ugA0

n
Q1

n

!2a
0
ge

11
Am

n C
1

2
X

c
(X

su
(Q1

n
))#

3

2
X

su
(X

su
(Q0

n
))#

3

2
X

ss
(Q0

n
)

!3X
c
(X

c
(Q0

n
))#

3

2

1

2n#1
X

c
(n (n#1)Q0

n~1
!n (n#1)Q0

n`1
)D

!2a
0
ge

13
A0

nC2X
c
(X

c
(Q1

n
))!Q1

n
#

6

2n#1
X

c
(Q1

n`1
!Q1

n~1
)D . (46)
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The next case to consider is m"1. The only terms which may cause concern
here are those that involve expressions in Qm~2

n
, all of which have coefficient

a
0
ge

11
. Taking this into account, we obtain

F1
n
:"j~1n(n#1) A1

n
Q1

n
#A1

n
X

ssp
(Q1

n
)!2A1

n
X

c
(Q1

n
)

#

ug
2

A1
n
(!Q2

n
#n (n#1)Q0

n
)

!2a
0
ge

11
A1

nC!
1

4
n (1#n)X

c
(X

su
(Q0

n
))#

1

2
X

ss
(Q1

n
)

#

1

4
X

c
(X

su
(Q2

n
))#X

su
(X

su
(Q1

n
))#

3

2
X

ss
(Q1

n
)!3X

c
(X

c
(Q1

n
))

#

3

2

1

2n#1
X

c
((n#1)2Q1

n~1
!n2Q1

n`1
)D

!2a
0
ge

13
A1

nCXc
(X

c
(!n(n#1) Q0

n
#Q2

n
))

!

1

2
(!n (n#1)Q0

n
#Q2

n
)!X

c
(X

sd
(Q1

n
)!X

su
(Q1

n
))

#

3

2n#1
X

c
(n(n#1)Q0

n~1
!n(n#1)Q0

n`1

#Q2
n`1

!Q2
n~1

)D . (47)

6 Implementation

As the surface spherical harmonics form an orthonormal basis, we can find the
inner product of Equation (39) with any other surface spherical harmonic and
hence extract a set of R(R#3)/2 simultaneous equations for the R(R#3)/2
unknown coefficients. The implementation in Maple is straightforward (see
Appendix C of Bees (1996) for the Maple code). There are a number of input
parameters in the problem. The search of parameter space has been limited by
assuming that j (Equation (4)) is given: for the micro-organism C. nivalis
j+2.2 and this value will be used throughout the following analysis. Further-
more, writing j"22/10 allows Maple to function using integer arithmetic and
so avoids truncation errors that can result from many operations of floating
point arithmetic. The shorthand

f"gu , (48)

m"a
0
ge

11
(49)

and
s"a

0
ge

13
(50)

is also employed.
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7 Results for a
0
50

If we set a
0
"0, so that the particles are spherical and the effects of rate-of-

strain vanish, then a particle’s orientation is determined by a balance between
the gravitational and vorticity driven torques. This case is easy to visualise
and one can imagine the deterministic situation in which vorticity increases
and the particles’ angle to the vertical increases with it. If the vorticity
increases too much, then the terms no longer balance and the particle tumbles.
We expect to see a similar situation with the stochastic model, with the
particles’ average swimming angle with the vertical increasing with vorticity.
For very high values of vorticity, the cell orientation probability density
function is no longer sharply peaked but almost uniform.

The five simultaneous equations for the second order approximation are

20

33
A0

1
#

2

3
fA1

1
#

4

15
A0

2
!

1

3n
"0

!

2

3
fA0

1
#

20

33
A1

1
#

2

5
A1

2
"0

!

4

5
A0

1
#

12

11
A0

2
#

6

5
fA1

2
"0 (51)

!

6

5
A1

1
!

6

5
fA0

2
#

36

11
A1

2
#

12

5
A2

2
"0

!

12

5
fA1

2
#

144

11
A2

2
"0 .

Fig. 2. Graph of the coefficient A0
1

with f for orders of approximation of 2, 3 and 4
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This set of equations is remarkably simple. It could be easily extended to the
time dependent problem and the resulting linear dynamical system studied.
Solving the above equations results in the expressions

A0
1
"

825

4n
5589#2420f2

1098075f4#2363735f2#2772144

A1
1
"

1815f
4n

1887#1210f2
1098075f4#2363735f2#2772144

A0
2
"

605

8n
11178!4235f2

1098075f4#2363735f2#2772144
(52)

A1
2
"

2495625

4n
f

1098075f4#2363735f2#2772144

A2
2
"

1830125

16n
f2

1098075f4#2363735f2#2772144
.

These expressions, together with Equations (18) and (28), are used in the
non-linear analysis of Bees and Hill (1997b).

Figures 2 and 3 show the graphs of A0
1

and A1
1

after truncating at orders
2, 3 and 4. It can be seen that orders 3 and 4 are almost indistinguishable (as
are all higher orders) and that even the second order approximation captures
the essential behaviour of the system. This is also true for the coefficients A0

2
,

Fig. 3. Graph of the coefficient A1
1

with f for orders of approximation of 2, 3 and 4
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Fig. 4. Graph of the coefficient A0
2

with f for orders of approximation of 2, 3 and 4

Fig. 5. Graph of the coefficient A1
2

with f for orders of approximation of 2, 3 and 4

A1
2

and A2
2

(Figs. 4—6). However, the sizes of the algebraic expressions for the
coefficients vary markedly. The expressions quickly become cumbersome and
unmanageable after the fourth order. At f"0, the second order approxima-
tion for A0

1
differs by only 3% from the third order approximation.

Section 3 above shows that A1
1

represents the x component of the particle
orientation and A0

1
the z component. There are no physical mechanisms that

result in sharply peaked distributions which may cause resolution problems
for a

0
"0. This is not typically the case for a

0
90 as described in the next

section. Here, we have chosen a typical value of the parameter j, and in
general as j increases (i.e. either D

r
or B decreases) the distribution becomes

more sharply peaked.
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Fig. 6. Graph of the coefficient A2
2

with f for orders of approximation of 2, 3 and 4

8 Results for a
0
90

For an expansion truncated at order R, the coefficients are given by

Am
n
"

Ym
n
[1
2

(R#1)2](f, m, s)

Z [1
2

(R#1)2](f, m, s)
(53)

(by observation) where Ym
n
[N](f, m, s) and Z[N](f, m, s) denote polynomials

in f, m, and s, with a maximum combined order of N. We note that (R#1)2/2
is just less than the total number of coefficients, R(R#3)/2, as expected, and
that the approximation to the particle orientation p.d.f., when s and f"0,
converges rapidly close to m"0 (similarly for s). Otherwise, for low orders
of the approximation, spurious singularities arise in the values of the coeffi-
cients A0

1
(m), A1

1
(m), A0

2
(m), A1

2
(m) and A2

2
(m), all of which share the same

denominator, Z[1
2
(R#1)2](m). As the order of approximation, R, increases,

the singularities move further from the origin. When R"10 the approxima-
tion is well behaved in the region DmD610 but singularities still exist in
the region DmD710. This behaviour is illustrated in Figs. 7—9. None of the
coefficients is a symmetric function of m, on account of the very different flow
fields, with respect to gravity, for positive or negative e

11
. Negative values of

e
11

increase the probability that the particle will be orientated vertically,
whereas positive values decrease it. The existence of spurious singularities
implies that there is a physical difficulty in trying to represent the solutions by
a finite sum of spherical harmonics. If e

11
increases (implying that e

33
decreases) then the particle orientation becomes more and more likely to
be along the x axis and less random. This implies that the distribution
becomes more peaked and the number of spherical harmonics may be insuffi-
cient to represent it. As the order of approximation increases, the problem is
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Fig. 7. Graph of the coefficient A0
1

versus m for a third order approximation. f"s"0

Fig. 8. Graph of the coefficient A0
1

versus m for a seventh order approximation. f"s"0

Fig. 9. Graph of the coefficient A0
1

versus m for a tenth order approximation. f"s"0
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alleviated. However, for R'10 the computer time and space required become
excessive, and the Maple expressions become unmanageable.

9 Regions of validity

Figure 10 is a schematic diagram of parameter space. The two regions that
exhibit resolution problems are identified and the region where reliable results
are obtained is indicated. Although the spherical harmonic approximation for
aspherical particles can be discontinuous at all orders of truncation, it does
not imply that the method is a failure. The coefficient A0

1
(f, m, s) actually

converges to its true value for reasonably large regions of parameter space.
But what are realistic/experimental values for the parameters in bioconvec-
tion? Using the definition g"BX, where X is a typical scale for vorticity and
rate-of-strain and B is the gyrotaxis orientation parameter, we get

m\a
0
BE

11
, (54)

where E
11

\X is a dimensional component of the rate-of-strain tensor. From
observations (Childress et al. 1975; Kessler 1985; Bees 1996), a typical fluid
velocity will not exceed 1 mms~1 and will change over a distance of 1mm.
This indicates that in experiments E

11
6O (1). Hence, m6O(1) and, in normal

situations, the fourth order approximation should be valid.
Figures 11—13 display second order approximations for D

xx
, D

xz
and

D
zz
, respectively, versus f, when m"s"0, with different values of N

Fig. 10. A schematic diagram of u and e
11

space — highlighting the regions of validity when
the spherical harmonic approximation is truncated. The solid lines indicate the possibility of
spurious singularities and the surrounding shaded regions indicate unreliable results

Orientation distribution of small dipolar particles in steady shear flows 287



Fig. 11. A graph of D
xx

with varying f andN for a second order approximation to f (h, /)
with a

0
"0. N increases with D

xx
(0) from 1.0 to 2.0

Fig. 12. A graph of D
xx

with varying f andN for a second order approximation to f (h, /)
with a

0
"0. N increases with D

xx
(0) from 1.0 to 2.0
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Fig. 13. A graph of D
xx

with varying f andN for a second order approximation to f (h, /)
with a

0
"0. N increases with D

zz
(0) from 1.0 to 2.0

(Equation (27)). Table 1 tabulates D
xx

and D
zz

for a selection of f and N
and, clearly, the diffusion coefficients quickly converge for increasing trunc-
ation order. We see that the diffusion coefficients vary only a small amount
and that D

xz
;D

xx
+D

zz
so that perhaps the assumption of isotropic

diffusion made in the earlier models of bioconvection (e.g. Pedley et al.
1988) is reasonable. However, notice the qualitative differences between
D

xx
and D

zz
around f"0. The typical measured value for N of 1.3 (Hill and

Häder 1997) has a significant effect on the type of stationary point of D
zz

and
the sign of the gradient of D

xz
at f"0 when compared to the case when

N"1.0. In fact D
xz

looks very flat, at this value of N, for all f. Otherwise,
increasing N increases the magnitude of the diagonal terms in the diffusion
tensor.

10 Asymptotic results

In this section we consider the case where N"1 in order to compare the
results from the spherical harmonic expansion with independently derived
asymptotics. For the case where there is no flow, Pedley and Kessler (1990)
calculate the diffusion tensor to be orthotropic, with components D

H
"

0.26 and D
V
"0.16. For small vorticity Pedley and Kessler (1990) find (to
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Table 1. Comparison of values of the diffusion tensor for vary-
ing approximation truncation order, f andN, where s"m"0

f D
xx

D
zz

D
xx

D
zz

N"1.0 N"1.3

2nd order approximation

0.0 0.252 0.189 0.328 0.337
0.2 0.252 0.191 0.329 0.337
0.4 0.251 0.199 0.334 0.339
0.8 0.248 0.234 0.345 0.355
1.6 0.271 0.293 0.380 0.394
3.2 0.313 0.321 0.419 0.418

3rd order approximation

0.0 0.260 0.154 0.338 0.298
0.2 0.257 0.162 0.336 0.304
0.4 0.250 0.182 0.333 0.318
0.8 0.240 0.235 0.335 0.356
1.6 0.268 0.296 0.376 0.394
3.2 0.313 0.321 0.418 0.418

4th order approximation

0.0 0.259 0.156 0.337 0.301
0.2 0.257 0.163 0.336 0.306
0.4 0.250 0.182 0.334 0.319
0.8 0.241 0.234 0.336 0.355
1.6 0.268 0.296 0.376 0.396
3.2 0.313 0.321 0.418 0.418

2 significant figures)

D
»2

s
q
"A

0.26 0 !0.097f

0 0.26 0

!0.097f 0 0.16 B#O (f2) . (55)

Expanding Equation (28) for an 4th order truncation gives

D
»2

s
q
"A

0.259!0.0709f2 0 !0.102f

0 0.259!0.169f2 0

!0.102f 0 0.156#0.181f2 B#O(f3) , (56)

to 3 significant figures. The no flow values compare well with those given in
Equation (55). The first correction to the diagonal terms occurs at O(f2), in
keeping with the expected symmetry, which are beyond those calculated by
Pedley and Kessler (1990).

If we consider the case where vorticity is very large, f<1, then, for
a spherical harmonic expansion at second order, the asymptotic expansions of
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Equations (52) give

A0
1
"0.45455

1

nf2
#OA

1

f4B (57)

A1
1
"0.5

1

nf
#OA

1

f3B (58)

A0
2
"!0.29167

1

nf2
#OA

1

f4B (59)

A1
2
"0.56818

1

nf3
#OA

1

f5B (60)

A2
2
"0.10417

1

nf2
#OA

1

f4B , (61)

to 5 significant figures. Substituting these functions into Equations (18) and
(28) provides

SpT"A
0.66666 1f

0

0.60606 1
f2
B#OA

1

f3B (62)

and

D
»2

s
q
"

1

3
I#A

!0.2 1
f2

0 0.050500 1
f3

0 !0.088893 1
f2

0

0.050500 1
f3

0 !0.15556 1
f2
B#OA

1

f4B . (63)

Asymptotic results for large f can be derived independently as follows. We
begin again from the non-dimensionalised Fokker-Planck Equation (3), in
which we consider spherical particles, thus setting a

0
"0. Taking j"O(1)

and f,gu<1 we form the small parameter d"(fj)~1;1. In order to
present the asymptotic theory as generally as possible, we allow the vorticity
to have a vertical component. We follow Brenner and Weissman (1972) in the
choice of coordinate system by defining the unit vectors

e
1
"(x' 'k)'x' /sinc , (64)

e
2
"x' 'k/sinc (65)

and
e
3
"x' (66)

where c is the angle between the unit vorticity vector, x' , and k. (e
1
, e

2
, e

3
)

defines a Cartesian coordinate system in which

k"sin ce
1
#cos ce

3
(67)

and
p"sin h cos/e

1
#sin h sin /e

2
#cos he

3
. (68)
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Equation (3) becomes

Lf

L/
"dG

1

sin h
L
Lh Asin h

Lf

Lh B#
1

sin2 h
L2f
L/2

#jC
sin c sin/

sin h
Lf

L/
!(sin c cos h cos/!cos c sin h)

Lf

Lh

#2(sin c sin h cos/#cos c cos h) fD H . (69)

Expanding the orientational p.d.f. as

f"f
0
#df

1
#d2f

2
#2 , (70)

the leading order gives

Lf
0

L/
"0 . (71)

Hence, f
0
,f

0
(h), where 2n:n

0
f
0
(h)sin h dh"1. At O(d),

Lf
1

L/
"

1

sin h
d

dhAsin h
df

0
dh B

#jC!(sin c cos h cos/!cos c sin h)
df

0
dh

#2(sin c sin h cos/#cos c cos h) f
0D . (72)

Now f
1

must be periodic in / with period 2n so the terms independent of
/ must vanish, i.e.

1

sin h
d

dh Asin h
df

0
dh B#j cos cCsin h

df
0

dh
#2 cos h f

0D"0 , (73)

which is an ordinary differential equation from which f
0

can be determined.
Writing x"cos h, we obtain

d

dx C(1!x2)
df

0
dx D#j cos cC!(1!x2)

df
0

dx
#2x f

0D"0 (74)

subject to :1
~1

f
0
(x) dx"1/2n. Hence,

f
0
(h)"kej@#04 h , (75)

where j@"j cos c and

k"
j@

4n sinh j@
. (76)
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Integrating Equation (72) gives

f
1
"F

1
(h)#sin/G

1
(h) , (77)

where

G
1
(h)"kjej@G hsin c sin h (j@ cos h#2) (78)

and

P
n

0

F
1
(h)sin h dh"0 . (79)

At O (d2) we obtain

Lf
2

L/
"

1

sin h
L
Lh Asin h

Lf
1

Lh B#
1

sin2 h
L2f

1
L/2

#jC
sin c sin /

sin h
Lf

1
L/

!(sin c cos h cos/!cos c sin h)
Lf

1
Lh

#2(sin c sin h cos/#cos c cos h) f
1D . (80)

Again, since f
2

is periodic in /, the terms independent of / must be zero, so

1

sin h
d

dh Asin h
dF

1
dh B#j cos cCsin h

dF
1

dh
#2 cos hF

1D"0 . (81)

The only solution satisfying Equation (79) is

F
1
"0 (82)

and thus Equation (80) gives

f
2
"F

2
(h)!cos/G

21
(h)!cos 2/G

22
(h) , (83)

where

G
21

(h)"!kj sin cej@x (1!x2)1@2(4!j@2#8j@x#2j@2x2) (84)

and

G
22

(h)"
k
4

j2 sin2 c ej@x(1!x2) (6#6j@x#j@2x2) . (85)

In a similar manner, at O(d3) we get

1

sin h
d

dh Asin h
dF

2
dh B#

j sin c
2 sin h

G
21
#j cos cCsin h

dF
2

dh
#2 cos hF

2D
#j sin cC

1

2
cos h

dG
21

dh
!sin hG

21D"0 . (86)

This expression can be integrated as it stands but, instead, we now take the
limit cPn/2 (so as to compare with results from previous sections) so that
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j@P0 and kP1/4n. In this limit,

G
1
(h)"

j
2n

sin h , (87)

G
21

(h)"!

j sin h
n

(88)

and

G
22

(h)"
3j2 sin2 h

8n
. (89)

Solving for F
2

yields

F
2
(x)"

j2
12n

(1!3x2) . (90)

Therefore,

f
2
"

j2
12n

(1!3 cos2 h)#
j
n

cos/ sin h!
3j2

8n
cos 2/ sin2 h . (91)

Equations (15) and (26) allow us to calculate the average swimming direction,
SpT, and the diffusion tensor, D, respectively. Writing

SpT"SpT(0)#dSpT(1)#d2SpT(2)#. . . (92)
we find that

SpT(0)"A0, 0, cothj@!
1

j@BP(0, 0, 0) as cP
n
2

, (93)

SpT(1)"A0, j sin cC1#
1

j@2
!

coth j@
j@ D, 0BPA0,

2

3j
, 0B as cP

n
2

(94)

and

SpT(2)PA
4j
3

, 0, 0B as cP
n
2

. (95)

In a similar manner,

SppT"
1

3
I#d2j2 A

! 7
45

0 0

0 11
45

0

0 0 ! 4
45
B#O(d3) . (96)

(These results were quoted, without derivation, by Pedley and Kessler (1992),
with an erroneous off-diagonal term in SppT.) We may now translate these
laboratory coordinates to the coordinates in the previous sections by the
simple transformation,

(x
1
, x

2
, x

3
) " (x

3
, !x

1
, !x

2
) . (97)

In particular, if j"2.2 and N"1.0 then

SpT"A
0.66667 1f

0

0.60606 1
f2
B#OA

1

f3B (98)

294 M. A. Bees et al.



and

D
»2

s
q
"SppT!SpTSpT (99)

"

1

3
I#A

!0.2 1
f2

0 0

0 !0.088889 1
f2

0

0 0 !0.15556 1
f2
B#OA

1

f3B (100)

to 5 significant figures. Both these expressions show excellent agreement with
Equations (62) and (63).

11 Discussion

In this paper we have demonstrated that closed-form expressions can be
obtained, in terms of the first five coefficients of the spherical harmonics, for
the first two moments of the particle orientation.

For the case of spherical particles, where a
0
"0, the coefficients of the

spherical harmonic expansion converge very rapidly. The second order ap-
proximation captures all of the behaviour (see Fig. 2), and yet is sufficiently
simple to be used in a non-linear analysis of bioconvection where relatively
compact expressions are benefical (Bees and Hill 1997b). The expansion to
order three is almost indistinguishable from higher orders and the second
order truncation deviates by less than 3% from the third order. Asymptotic
expressions have been derived, independently of the spherical harmonic ex-
pansion, that capture the behaviour of the system for small and large vorticity.
These expressions compare extremely well with the results from the spherical
harmonic expansion, thus validating the methods used to derive both sets of
results. We also show that the results can be extended to a three-dimensional
flow field in which there is no vertical vorticity. This will aid future analysis on
non-linear planform selection in bioconvection.

The case of aspherical particles, or non-zero a
0
, is not so well behaved. For

applications involving large ranges of rate-of-strain the method may not be
the most efficient means of obtaining a solution as we require high orders of
approximation and, hence, long expressions for the coefficients. This is due to
the inevitable resolution problems associated with large straining motions
constraining the cells to swim in well defined directions. However, for biocon-
vection problems, in which very large straining motions are never encoun-
tered, the method can be used with confidence. For a range of values for which
rate-of-strain is small, convergence is rapid, and this range increases in size as
the order of the approximation is increased. To extend the range further one
could construct simple, smooth functions from the convergent regions of the
coefficients and asymptotes for dominant flow conditions (e.g. for large
rate-of-strain).
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Finally, the methods described in this paper are sufficiently flexible that
solutions could be obtained for combinations of taxes (or orientational
responses to external stimuli). In particular, the interaction of gravitaxis,
gyrotaxis and phototaxis (see Kessler et al. 1992) could be investigated.

MAB would like to acknowledge the financial support of the EPSRC through an Earmar-
ked Studentship in Mathematical Biology during this work.

Appendix

Below is a summary of the operations or recursion relations that are used in
this paper. These relations allow expressions on the LHS to be written in
a simpler functional form (RHS). Each of these expressions is derived from the
identities quoted by Arfken (1985). Here, Pm

n
are associated Legendre poly-

nomials and ¹ m
n

are expressions of associated Legendre polynomials that can
be labeled with the indices m and n.

f X
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