1,938 research outputs found
On 2D Viscoelasticity with Small Strain
An exact two-dimensional rotation-strain model describing the motion of
Hookean incompressible viscoelastic materials is constructed by the polar
decomposition of the deformation tensor. The global existence of classical
solutions is proved under the smallness assumptions only on the size of initial
strain tensor. The proof of global existence utilizes the weak dissipative
mechanism of motion, which is revealed by passing the partial dissipation to
the whole system.Comment: Different contributions of strain and rotation of the deformation are
studied for viscoelastic fluids of Oldroyd-B type in 2
A blowup criterion for ideal viscoelastic flow
We establish an analog of the Beale-Kato-Majda criterion for singularities of
smooth solutions of the system of PDE arising in the Oldroyd model for ideal
viscoelastic flow
Genetic based discrete particle swarm optimization for elderly day care center timetabling
The timetabling problem of local Elderly Day Care Centers (EDCCs) is formulated into a weighted maximum constraint satisfaction problem (Max-CSP) in this study. The EDCC timetabling problem is a multi-dimensional assignment problem, where users (elderly) are required to perform activities that require different venues and timeslots, depending on operational constraints. These constraints are categorized into two: hard constraints, which must be fulfilled strictly, and soft constraints, which may be violated but with a penalty. Numerous methods have been successfully applied to the weighted Max-CSP; these methods include exact algorithms based on branch and bound techniques, and approximation methods based on repair heuristics, such as the min-conflict heuristic. This study aims to explore the potential of evolutionary algorithms by proposing a genetic-based discrete particle swarm optimization (GDPSO) to solve the EDCC timetabling problem. The proposed method is compared with the min-conflict random-walk algorithm (MCRW), Tabu search (TS), standard particle swarm optimization (SPSO), and a guided genetic algorithm (GGA). Computational evidence shows that GDPSO significantly outperforms the other algorithms in terms of solution quality and efficiency
Global Solutions for Incompressible Viscoelastic Fluids
We prove the existence of both local and global smooth solutions to the
Cauchy problem in the whole space and the periodic problem in the n-dimensional
torus for the incompressible viscoelastic system of Oldroyd-B type in the case
of near equilibrium initial data. The results hold in both two and three
dimensional spaces. The results and methods presented in this paper are also
valid for a wide range of elastic complex fluids, such as magnetohydrodynamics,
liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy
problem for the incompressible viscoelastic system of Oldroyd-B type in the
case of near equilibrium initial dat
Low-temperature electron dephasing time in AuPd revisited
Ever since the first discoveries of the quantum-interference transport in
mesoscopic systems, the electron dephasing times, , in the
concentrated AuPd alloys have been extensively measured. The samples were made
from different sources with different compositions, prepared by different
deposition methods, and various geometries (1D narrow wires, 2D thin films, and
3D thickfilms) were studied. Surprisingly, the low-temperature behavior of
inferred by different groups over two decades reveals a systematic
correlation with the level of disorder of the sample. At low temperatures,
where is (nearly) independent of temperature, a scaling
is found, where
is the maximum value of measured in the experiment, is the
electron diffusion constant, and the exponent is close to or slightly
larger than 1. We address this nontrivial scaling behavior and suggest that the
most possible origin for this unusual dephasing is due to dynamical structure
defects, while other theoretical explanations may not be totally ruled out.Comment: to appear in Physica E, Proceedings for the International Seminar and
Workshop "Quantum Coherence, Noise, and Decoherence in Nanostructures", 15-26
May 2006, Dresde
Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan
Questions: What are the effects of replacing mixed species natural forests with Cryptomeria japonica plantations on understorey plant functional and species diversity? What is the role of the understorey light environment in determining understorey diversity and community in the two types of forest?
Location: Subtropical northeast Taiwan.
Methods: We examined light environments using hemispherical photography, and diversity and composition of understorey plants of a 35‐yr C. japonica plantation and an adjacent natural hardwood forest.
Results: Understorey plant species richness was similar in the two forests, but the communities were different; only 18 of the 91 recorded understorey plant species occurred in both forests. Relative abundance of plants among different functional groups differed between the two forests. Relative numbers of shade‐tolerant and shade‐intolerant seedling individuals were also different between the two forest types with only one shade‐intolerant seedling in the plantation compared to 23 seedlings belonging to two species in the natural forest. In the natural forest 11 species of tree seedling were found, while in the plantation only five were found, and the seedling density was only one third of that in the natural forest. Across plots in both forests, understorey plant richness and diversity were negatively correlated with direct sunlight but not indirect sunlight, possibly because direct light plays a more important role in understorey plant growth.
Conclusions: We report lower species and functional diversity and higher light availability in a natural hardwood forest than an adjacent 30‐yr C. japonica plantation, possibly due to the increased dominance of shade‐intolerant species associated with higher light availability. To maintain plant diversity, management efforts must be made to prevent localized losses of shade‐adapted understorey plants
Analysis of Nematic Liquid Crystals with Disclination Lines
We investigate the structure of nematic liquid crystal thin films described
by the Landau--de Gennes tensor-valued order parameter with Dirichlet boundary
conditions of nonzero degree. We prove that as the elasticity constant goes to
zero a limiting uniaxial texture forms with disclination lines corresponding to
a finite number of defects, all of degree 1/2 or all of degree -1/2. We also
state a result on the limiting behavior of minimizers of the Chern-Simons-Higgs
model without magnetic field that follows from a similar proof.Comment: 40 pages, 1 figur
W Boson Inclusive Decays to Quarkonium at the LHC
In this paper, the production rates of quarkonia eta_c, J/psi, eta_b,
Upsilon, B_c and B_c^* through W boson decay at the LHC are calculated, at the
leading order in both the QCD coupling constant and in v, the typical velocity
of the heavy quark inside of mesons. It shows that a sizable number of
quarkonia from W boson decay will be produced at the LHC. Comparison with the
predictions by using quark fragmentation mechanism is also discussed. Results
show that, for the charmonium production through W decay, the difference
between predictions by the fragmentation mechanism and complete leading order
calculation is around 3%, and it is insensitive to the uncertainties of
theoretical parameters; however, for the bottomonium and B_c^(*) productions,
the difference cannot be ignored as the fragmentation mechanism is less
applicable here due to the relatively large ratio mb/mw.Comment: Updated to match the published version in EPJ
How to compare arc-annotated sequences: The alignment hierarchy
International audienceWe describe a new unifying framework to express comparison of arc-annotated sequences, which we call alignment of arc-annotated sequences. We first prove that this framework encompasses main existing models, which allows us to deduce complexity results for several cases from the literature. We also show that this framework gives rise to new relevant problems that have not been studied yet. We provide a thorough analysis of these novel cases by proposing two polynomial time algorithms and an NP-completeness proof. This leads to an almost exhaustive study of alignment of arc-annotated sequences
Towards Controlling the Acceptance Factors for a Collaborative Platform in Engineering Design
International audienceThis paper might serve as a guide to take step towards a better acceptance of computer-based Knowledge management (KM) tools in institutional setting. At first time, it investigates a set of factors with different origins which are proved to have an effect on usage decision. Secondly, we set a list of candidate factor which are supposed to influence future users of a collaborative KM platform (Dimocode). At the end, we develop a methodology to take into account the selected factors and master their positive or negative impacts. The contents of this paper would be an appropriate framework in the way of Knowledge management systems (KMS) deployment
- …
