137 research outputs found

    Communication: Transient Anion States Of Phenol...(h2o) N (n = 1, 2) Complexes: Search For Microsolvation Signatures

    Get PDF
    We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species. © 2014 AIP Publishing LLC.1415NSF; National Stroke FoundationSanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , For a review, see, 10.1140/epjd/e2005-00206-6Wang, C.-R., Nguyen, J., Lu, Q.-B., (2009) J. Am. Chem. Soc., 131, p. 11320. , 10.1021/ja902675gBaccarelli, I., Bald, I., Gianturco, F.A., Illenberger, E., Kopyra, J., (2011) Phys. Rep., 508, p. 1. , 10.1016/j.physre2011.06.004Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , 10.1063/1.2739514De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , 10.1063/1.3428620Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkiel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Freitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Freitas, T.C., Coutinho, K., Varella, M.T.D.N., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2013) J. Chem. Phys., 138, p. 174307. , 10.1063/1.4803119De Oliveira, E.M., Sanchez, S.D.A., Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Do Varella N, M.T., (2012) Phys. Rev. A, 86, pp. 020701-R. , 10.1103/PhysRevA.86.020701Jordan, K.D., Michejda, J.A., Burrow, P.D., (1976) J. Am. Chem. Soc., 98, p. 7189. , 10.1021/ja00439a014Khatymov, R.V., Muftakhov, M.V., Mazunov, V.A., (2003) Rapid Commun. Mass Spectrom., 17, p. 2327. , 10.1002/rcm.1197Dos Santos, J.S., Da Costa, R.F., Varella, M.T.D.N., (2012) J. Chem. Phys., 136, p. 084307. , 10.1063/1.3687345Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, pp. L129. , 10.1088/0953-4075/37/6/L03Takatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Barreto, R.C., Coutinho, K., Georg, H.C., Canuto, S., (2009) Phys. Chem. Chem. Phys., 11, p. 1388. , 10.1039/b816912h(1998) CRC Handbook of Chemistry and Physics, , 79th ed., edited by D. R. Lide (CRC, Boca Raton)http://dx.doi.org/10.1063/1.4892066Nenner, I., Schulz, G.J., (1975) J. Chem. Phys., 62, p. 1747. , 10.1063/1.430700Winstead, C., McKoy, V., (2007) Phys. Rev. Lett., 98, p. 113201. , 10.1103/PhysRevLett.98.113201Winstead, C., McKoy, V., (2007) Phys. Rev. A, 76, p. 012712. , 10.1103/PhysRevA.76.012712Mažín, Z., Gorfinkiel, J.D., (2011) J. Chem. Phys., 135, p. 144308. , 10.1063/1.3650236Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , 10.1021/jp048759aSchmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Kossoski, F., Bettega, M.H.F., Varella, M.T.D.N., (2014) J. Chem. Phys., 140, p. 024317. , 10.1063/1.4861589Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 79, p. 042701. , 10.1103/PhysRevA.79.042701Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Asmis, K.R., Allan, M., Pyrrole Data in the Gallery of Unpublished EEL Spectra, , http://www.chem.unifr.ch/ma/dir_allan/pyrrole_EELS.pdfHaxton, D.J., McCurdy, C.W., Rescigno, T.N., (2007) Phys. Rev. A, 75, p. 012710. , 10.1103/PhysRevA.75.012710Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Fuke, K., Kaya, K., (1983) Chem. Phys. Lett., 94, p. 97. , 10.1016/0009-2614(83)87218-

    Effect of environmental temperature during the of brooding period on growing period of pullets viscera and tibia

    Get PDF
    ArticlePoultry production in subtropical and tropical regions faces many problems, one of which is the high air temperature causing thermal stress, particularly dangerous in high-producing birds. Thus, the negative effects caused by heat stress (HS) must be managed. The objective of this study was to evaluate the effects of four different levels of HS in viscera and tibia of pullets. A total of 648 chicks (Lohmann LSL Lite) were used in this study in two different phases. The pre-experimental phase (PEP) was from day 1 through 6 weeks of age. The birds were reared with three different environmental temperatures: thermal comfort, hot and cold. The experimental phase (EP) was conducted from the 7th to the 17th week. Pullets from each thermal environment of the PEP were submitted to: 20 °C, 25 °C, 30 °C, 35 °C. At the end of the 17th week of age 120 pullets were euthanatized and the organs, heart, liver, spleen and gizzard were weighed, as also their tibias. Effects of PEP, and its interaction with EP, were not significant (P < 0.05) for viscera and tibia weight. However, a significant increase (P < 0.05) in heart weight with the decrease of the environmental temperature was observed, being the pullets subject to 20ºC and 25 °C with the heaviest weights. For the liver, pullets subject to the 35 °C had the lowest weight and were different (P < 0.05) from the other three treatments. For gizzard, the difference (P < 0.05) was between the treatments 20ºC and 35 °C. These results indicate that brooding temperatures tested during the first 6 weeks of life did not affect the viscera and bone weight during the growing phase

    Electron Collisions With The Hcooh(h2o)n Complexes (n = 1, 2) In Liquid Phase: The Influence Of Microsolvation On The π Resonance Of Formic Acid

    Get PDF
    We report momentum transfer cross sections for elastic collisions of low-energy electrons with the HCOOH(H2O)n complexes, with n 1, 2, in liquid phase. The scattering cross sections were computed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for energies ranging from 0.5 eV to 6 eV. We considered ten different structures of HCOOHH2O and six structures of HCOOH(H2O)2 which were generated using classical Monte Carlo simulations of formic acid in aqueous solution at normal conditions of temperature and pressure. The aim of this work is to investigate the influence of microsolvation on the π shape resonance of formic acid. Previous theoretical and experimental studies reported a π shape resonance for HCOOH at around 1.9 eV. This resonance can be either more stable or less stable in comparison to the isolated molecule depending on the complex structure and the water role played in the hydrogen bond interaction. This behavior is explained in terms of (i) the polarization of the formic acid molecule due to the water molecules and (ii) the net charge of the solute. The proton donor or acceptor character of the water molecules in the hydrogen bond is important for understanding the stabilization versus destabilization of the π resonances in the complexes. Our results indicate that the surrounding water molecules may affect the lifetime of the π resonance and hence the processes driven by this anion state, such as the dissociative electron attachment. © 2013 AIP Publishing LLC.13817Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , 10.1126/science.287.5458.1658Hanel, G., Gstir, B., Denifl, S., Scheier, P., Probst, M., Farizon, B., Farizon, M., Märk, T.D., (2003) Phys. Rev. Lett., 90, p. 188104. , See, for example,10.1103/PhysRevLett.90.188104Denifl, S., Ptasinska, S., Cingel, M., Matejcik, S., Scheier, P., Märk, T.D., (2003) Chem. Phys. Lett., 377, p. 74. , 10.1016/S0009-2614(03)01096-0Abdoul-Carime, H., Gohlke, S., Illenberger, E., (2004) Phys. Rev. Lett., 92, p. 168103. , 10.1103/PhysRevLett.92.168103Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , See, for instance,10.1063/1.2263824Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , 10.1063/1.2424456Winstead, C., McKoy, V., Sanchez, S.D.A., (2007) J. Chem. Phys., 127, p. 085105. , 10.1063/1.2757617Gorfinkel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B: At. Mol. Opt. Phys., 39, p. 975. , 10.1088/0953-4075/39/4/021De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , references therein. 10.1063/1.3428620Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93, p. 068101. , 10.1103/PhysRevLett.93.068101Scheer, A.M., Aflatooni, K., Gallup, G.A., Burrow, P.D., (2004) Phys. Rev. Lett., 92, p. 068102. , 10.1103/PhysRevLett.92.068102Sanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , 10.1140/epjd/e2005-00206-6Gianturco, F.A., Luchese, R.R., Langer, J., Martin, I., Stano, M., Karwasz, G., Illenberg, E., (2005) Eur. Phys. J. D, 35, p. 417. , 10.1140/epjd/e2005-00233-3Freitas, T.C., Sanchez, S.A., Varella, M.T.D.N., Bettega, M.H.F., (2011) Phys. Rev. A, 84, p. 062714. , 10.1103/PhysRevA.84.062714Caron, L., Bouchiha, D., Gorfinkiel, J.D., Sanche, L., (2007) Phys. Rev. A, 76, p. 032716. , 10.1103/PhysRevA.76.032716Caprasecca, S., Gorfinkel, J.D., Bouchiha, D., Caron, L., (2009) J. Phys. B, 42, p. 095205. , 10.1088/0953-4075/42/9/095205Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFreitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Fabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Gianturco, F.A., Lucchese, R.R., (2004) New J. Phys., 6, p. 66. , 10.1088/1367-2630/6/1/066Gianturco, F.A., Lucchese, R.R., (2006) Eur. Phys. J. D, 39, p. 399. , 10.1140/epjd/e2006-00112-5Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2006) Phys. Rev. Lett., 96, p. 213201. , 10.1103/PhysRevLett.96.213201Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) Phys. Rev. A, 74, p. 042716. , 10.1103/PhysRevA.74.042716Vizcaino, V., Jelisavcic, M., Sullivan, J.P., Buckman, S.J., (2006) New J. Phys., 8, p. 85. , 10.1088/1367-2630/8/6/085Allan, M., (2006) J. Phys. B, 39, p. 2939. , 10.1088/0953-4075/39/14/002Bettega, M.H.F., (2006) Phys. Rev. A, 74, p. 054701. , 10.1103/PhysRevA.74.054701Allan, M., (2007) Phys. Rev. Lett., 98, p. 123201. , 10.1103/PhysRevLett.98.123201Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2009) Phys. Rev. A, 80, p. 046701. , 10.1103/PhysRevA.80.046701Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Coutinho, K., Canuto, S., (2000) J. Chem. Phys., 113, p. 9132. , 10.1063/1.1320827Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Coutinho, K., Canuto, S., DICE, a Monte Carlo program for molecular liquid simulation, version 2.9, University of São Paulo, São Paulo, 2009Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, p. 6269. , 10.1021/j100308a038Moller, C., Plesset, M.S., (1934) Phys. Rev., 46, p. 618. , 10.1103/PhysRev.46.618Leininger, M.L., Allen, W.D., Schaefer, H.F., Sherrill, C.D., (2000) J. Chem. Phys., 112, p. 9213. , 10.1063/1.481764Dunning, Jr.T.H., (1989) J. Chem. Phys., 90, p. 1007. , 10.1063/1.456153Frisch, M.J., Trucks, G.W., Schlegel, H.B., GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2003Briggs, J.M., Nguyen, T.B., Jorgensen, W.L., (1991) J. Phys. Chem., 95, p. 3315. , 10.1021/j100161a065Breneman, C.M., Wiberg, K.B., (1990) J. Comput. Chem., 11, p. 361. , 10.1002/jcc.540110311Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R., Barone, V., (2006) J. Chem. Phys., 124, p. 094107. , 10.1063/1.2173258Manzoni, V., Lyra, M.L., Gester, R.M., Coutinho, K., Canuto, S., (2010) Phys. Chem. Chem. Phys., 12, p. 14023. , 10.1039/c0cp00122hDamasceno, M.V.A., Cabral, B.J.C., Coutinho, K., (2012) Theor. Chem. Acc., 131, p. 1214. , 10.1007/s00214-012-1214-yTakatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Lima, M.A.P., Brescansin, L.M., Da Silva, A.J.R., Winstead, C., McKoy, V., (1990) Phys. Rev. A, 41, p. 327. , 10.1103/PhysRevA.41.327Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-ZDunning, Jr.T.H., (1970) J. Chem. Phys., 53, p. 2823. , 10.1063/1.1674408Bauschlicher, C., (1980) J. Chem. Phys., 72, p. 880. , 10.1063/1.439243Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, p. 129. , 10.1088/0953-4075/37/6/L03Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B, 38, p. 4363. , 10.1088/0953-4075/38/24/003Gray, C.G., Gubbins, K.E., (1984) Theory of Molecular Fluids. Volume 1: Fundamentals, , (Clarendon Press, Oxford)Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Staley, S.W., Strnad, J.T., (1994) J. Phys. Chem., 98, p. 116. , 10.1021/j100052a020Freitas, T.C., Varella, M.T.D.N., Da Costa, R.F., Lima, M.A.P., Bettega, M.H.F., (2009) Phys. Rev. A, 79, p. 022706. , 10.1103/PhysRevA.79.022706Rivelino, R., Cabral, B.J.C., Coutinho, K., Canuto, S., (2005) Chem. Phys. Lett., 407, p. 13. , 10.1016/j.cplett.2005.03.049Miertuš, S., Scrocco, E., Tomasi, J., (1981) Chem. Phys., 55, p. 117. , 10.1016/0301-0104(81)85090-2Cancès, E., Mennucci, B., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3032. , 10.1063/1.474659Hehre, W.J., Radom, L., Schleyer V. P, R., Pope, J.A., (1986) Ab Initio Molecular Orbital Theory, , 1st ed. (John Wiley and Sons, New York)Jensen, F., (2007) Introduction to Computational Chemistry, , 2nd ed. (John Wiley and Sons, West Sussex

    Two-magnon Raman scattering in insulating cuprates: Modifications of the effective Raman operator

    Full text link
    Calculations of Raman scattering intensities in spin 1/2 square-lattice Heisenberg model, using the Fleury-Loudon-Elliott theory, have so far been unable to describe the broad line shape and asymmetry of the two magnon peak found experimentally in the cuprate materials. Even more notably, the polarization selection rules are violated with respect to the Fleury-Loudon-Elliott theory. There is comparable scattering in B1gB_{1g} and A1gA_{1g} geometries, whereas the theory would predict scattering in only B1gB_{1g} geometry. We review various suggestions for this discrepency and suggest that at least part of the problem can be addressed by modifying the effective Raman Hamiltonian, allowing for two-magnon states with arbitrary total momentum. Such an approach based on the Sawatzsky-Lorenzana theory of optical absorption assumes an important role of phonons as momentum sinks. It leaves the low energy physics of the Heisenberg model unchanged but substantially alters the Raman line-shape and selection rules, bringing the results closer to experiments.Comment: 7 pages, 6 figures, revtex. Contains some minor revisions from previous versio

    Advancing tools to promote health equity across European Union regions : The EURO-HEALTHY project

    Get PDF
    Population health measurements are recognised as appropriate tools to support public health monitoring. Yet, there is still a lack of tools that offer a basis for policy appraisal and for foreseeing impacts on health equity. In the context of persistent regional inequalities, it is critical to ascertain which regions are performing best, which factors might shape future health outcomes and where there is room for improvement. Under the EURO-HEALTHY project, tools combining the technical elements of multi-criteria value models and the social elements of participatory processes were developed to measure health in multiple dimensions and to inform policies. The flagship tool is the Population Health Index (PHI), a multidimensional measure that evaluates health from the lens of equity in health determinants and health outcomes, further divided into sub-indices. Foresight tools for policy analysis were also developed, namely: (1) scenarios of future patterns of population health in Europe in 2030, combining group elicitation with the Extreme-World method and (2) a multi-criteria evaluation framework informing policy appraisal (case study of Lisbon). Finally, a WebGIS was built to map and communicate the results to wider audiences. The Population Health Index was applied to all European Union (EU) regions, indicating which regions are lagging behind and where investments are most needed to close the health gap. Three scenarios for 2030 were produced - (1) the 'Failing Europe' scenario (worst case/increasing inequalities), (2) the 'Sustainable Prosperity' scenario (best case/decreasing inequalities) and (3) the 'Being Stuck' scenario (the EU and Member States maintain the status quo). Finally, the policy appraisal exercise conducted in Lisbon illustrates which policies have higher potential to improve health and how their feasibility can change according to different scenarios. The article makes a theoretical and practical contribution to the field of population health. Theoretically, it contributes to the conceptualisation of health in a broader sense by advancing a model able to integrate multiple aspects of health, including health outcomes and multisectoral determinants. Empirically, the model and tools are closely tied to what is measurable when using the EU context but offering opportunities to be upscaled to other settings
    corecore