1,557 research outputs found

    Arsenic(III) remediation from contaminated water by oxidation and Fe/Al co-precipitation

    Get PDF
    Battery grade γ-MnO2 powder was investigated as an oxidant and an adsorbent in combination with Fe/Al coagulants for removal of arsenic from contaminated water. Simultaneous oxidation of As(III) and removal by coprecipitation/adsorption (one step process) was compared with pre-oxidation and subsequent removal by coprecipitation/adsorption (two step process). The rate of As(III) oxidation with MnO2 is completed in two stages: rapid initially followed by a first order reaction. As(III) is oxidised to As(V) by the MnO2 with a release of approximately 1:1 molar Mn(II) into the solution. No significant pH effect on oxidation of As(III) was observed in the pH range 4 - 6. The rate showed a decreasing trend above pH 6. The removal of As(V) by adsorption on the MnO2 decreased significantly with increasing pH from 4 to 8. The adsorption capacity of the γ-MnO2 with particle size 90% passing 10 µm was determined to be 1.5 mg/g at pH 7. MnO2 was found to be more effective as an oxidant for As(III) in the two step process than in the one step process

    The effect of Cl−, PO43−, and SiO32− on the adsorption of As(V) and As(III) on bauxite in water

    Get PDF
    The adsorption performance of bauxite for the removal of As(V) and As(III) from contaminated water was investigated. The effect of initial pH, contact time, and the presence of silicate, phosphate and chloride, at concentrations typically found in the ground drinking water in India/Bangladesh, were investigated. As(V) is adsorbed at a rapid initial rate (>96% adsorption within 1 minute) followed by a slow process, reaching a steady state within 6 hours. In comparison the adsorption of As(III) is slow, only 40% is adsorbed within the first minute that gradually rises to 85% in 6 hours. The presence of chloride has insignificant effect on both As(III) and As(V) adsorption. Silicate and phosphate both significantly affect adsorption of both the arsenic ions. Phosphate affects adsorption more strongly than silicate and their effect on As(III) is higher than As(V). When silicate and phosphate are present together, the adsorption of As(V) is almost the same as for the individual ions. However, the As(III) adsorption is significantly affected. The adsorption is 61% as compared to 73% for silicate and 71% for phosphate when individually present. While chloride alone has insignificant effect on the adsorption of the arsenic ions, it has some influence when present together with silicate or phosphate. Chloride + Phosphate combination increases As(V) adsorption by 3% and As(III) by 8%. Chloride + Silicate combination increases As(V) adsorption by 9% but decreases As(III) by almost the same percentage. As compared to the influence of silicate + phosphate, the combination of the three ions together, lowers the As(V) adsorption by 4% and increases As(III) by 4%

    Solving Weighted Voting Game Design Problems Optimally: Representations, Synthesis, and Enumeration

    Get PDF
    We study the inverse power index problem for weighted voting games: the problem of finding a weighted voting game in which the power of the players is as close as possible to a certain target distribution. Our goal is to find algorithms that solve this problem exactly. Thereto, we study various subclasses of simple games, and their associated representation methods. We survey algorithms and impossibility results for the synthesis problem, i.e., converting a representation of a simple game into another representation. We contribute to the synthesis problem by showing that it is impossible to compute in polynomial time the list of ceiling coalitions of a game from its list of roof coalitions, and vice versa. Then, we proceed by studying the problem of enumerating the set of weighted voting games. We present first a naive algorithm for this, running in doubly exponential time. Using our knowledge of the

    Tight-binding study of interface states in semiconductor heterojunctions

    Full text link
    Localized interface states in abrupt semiconductor heterojunctions are studied within a tight-binding model. The intention is to provide a microscopic foundation for the results of similar studies which were based upon the two-band model within the envelope function approximation. In a two-dimensional description, the tight-binding Hamiltonian is constructed such that the Dirac-like bulk spectrum of the two-band model is recovered in the continuum limit. Localized states in heterojunctions are shown to occur under conditions equivalent to those of the two-band model. In particular, shallow interface states are identified in non-inverted junctions with intersecting bulk dispersion curves. As a specific example, the GaSb-AlSb heterojunction is considered. The matching conditions of the envelope function approximation are analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.

    Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel based superalloys

    Get PDF
    Nickel based superalloys are used in high strength, high value applications, such as gas turbine discs in aeroengines. In these applications the integrity of the disc is critical and therefore understanding crack initiation mechanisms is of high importance. With an increasing trend towards powder metallurgy routes for discs, sometimes unwanted non-metallic inclusions are introduced during manufacture. These inclusions vary in size from ~ 10 μm to 200 μm which is comparable to the grain size of the Nickel based superalloys. Cracks often initiate near these inclusions and the precise size, shape, location and path of these cracks are microstructurally sensitive. In this study, we focus on crack initiation at the microstructural length scale using a controlled three-point bend test, with the inclusion deliberately located within the tensile fibre of the beam. Electron backscatter diffraction (EBSD) is combined with high spatial resolution digital image correlation (HR-DIC) to explore full field plastic strain distributions, together with finite element modelling, to understand the micro-crack nucleation mechanisms. This full field information and controlled sample geometry enable us to systematically test crack nucleation criteria. We find that a combined stored energy and dislocation density provide promising results. These findings potentially facilitate more reliable and accurate lifing prediction tools to be developed and applied to engineering components

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Chemistry of new particle growth in mixed urban and biogenic emissions - Insights from CARES

    Get PDF
    Regional new particle formation and growth events (NPEs) were observed on most days over the Sacramento and western Sierra foothills area of California in June 2010 during the Carbonaceous Aerosols and Radiative Effect Study (CARES). Simultaneous particle measurements at both the T0 (Sacramento, urban site) and the T1 (Cool, rural site located ~40 km northeast of Sacramento) sites of CARES indicate that the NPEs usually occurred in the morning with the appearance of an ultrafine mode at ~15 nm (in mobility diameter, Dm, measured by a mobility particle size spectrometer operating in the range 10-858 nm) followed by the growth of this modal diameter to ~50 nm in the afternoon. These events were generally associated with southwesterly winds bringing urban plumes from Sacramento to the T1 site. The growth rate was on average higher at T0 (7.1 ± 2.7 nm h−1) than at T1 (6.2 ± 2.5 nm h−1), likely due to stronger anthropogenic influences at T0. Using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), we investigated the evolution of the size-resolved chemical composition of new particles at T1. Our results indicate that the growth of new particles was driven primarily by the condensation of oxygenated organic species and, to a lesser extent, ammonium sulfate. New particles appear to be fully neutralized during growth, consistent with high NH3 concentration in the region. Nitrogen-containing organic ions (i.e., CHN+, CH4N+, C2H3N+, and C2H4N+) that are indicative of the presence of alkyl-amine species in submicrometer particles enhanced significantly during the NPE days, suggesting that amines might have played a role in these events. Our results also indicate that the bulk composition of the ultrafine mode organics during NPEs was very similar to that of anthropogenically influenced secondary organic aerosol (SOA) observed in transported urban plumes. In addition, the concentrations of species representative of urban emissions (e.g., black carbon, CO, NOx, and toluene) were significantly higher whereas the photo-oxidation products of biogenic VOCs (volatile organic compounds) and the biogenically influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPEs over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and the San Francisco Bay Area, and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implications for quantifying the climate impacts of NPEs on global scale

    Quantum theory of two-photon interference

    Full text link
    In this paper, we study two-photon interference with the approach of photon quantum theory, with specific attention to the two-photon interference experiment carried out by Milena D'Angelo et al. (Phys. Rev. Lett 87:013602, 2001). We find the theoretical result is accordance with experiment data.Comment: arXiv admin note: substanital text overlap with arXiv:1011.3593, and with arXiv:quant-ph/0408001, arXiv:quant-ph/0103035 by other author

    Scarred Patterns in Surface Waves

    Full text link
    Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of quantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves (Faraday waves), which become progressively nonlinear beyond the wave instability threshold, to investigate the subtle interplay between boundaries and nonlinearity. Only a subset (three main types) of the computed linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disordered (but time-independent) patterns are also found even near onset. As the driving acceleration is increased, the time-independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations of lower entropy. We also report complex but highly symmetric (time-independent) patterns far above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added references and text. For high resolution images: http://physics.clarku.edu/~akudrolli/stadium.htm
    • …
    corecore