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9 Abstract

10 This study aims to explore the spatio-temporal characteristics of meteorological and 

11 agricultural droughts using the Standardized Precipitation Index (SPI) and Standardized Soil 

12 Moisture Index (SSI), respectively, as well as their relationships over the past three decades 

13 (1986-2016) in South Korea. The SSI shows less frequent droughts and longer drought 

14 duration compared to the SPI, due to the gradual decrease in the autocorrelation functions of 

15 the SSI. The strongest cross-correlations are observed at a 1-month lag between the SPI and 

16 SSI for most stations. Thus, the SPI could be more appropriate for defining the onset of a 

17 drought, whereas the SSI appears to be more effective for describing drought persistence. 

18 Moreover, the transition from meteorological to agricultural droughts is significantly 

19 dependent on the season, indicating that the transition between them is highly correlated with 

20 antecedent moisture conditions. The copula-based Multivariate Standardized Drought Index 

21 (MSDI) is introduced to explicitly postulate interdependence between the SPI and SSI in the 

22 context of a multivariate probability distribution. We employ a hierarchical agglomerative 

23 clustering approach along with a quantile regression model to better understand the spatio-

24 temporal pattern of the MSDI. More drought episodes under moderate to severe drought 

25 conditions are observed along the southern coast of South Korea. Additionally, persistent 

26 droughts with higher severity are observed in the northern part of South Korea, which may be 

27 attributed to a significant decreasing trend (or increasing drought risk).

28 Keywords: SPI, SSI, Multivariate drought index, Clustering analysis, Quantile regression

29

30 1. Introduction

31 Drought is a periodic phenomenon that exerts multifaceted negative impacts on a wide range 

32 of water-related sectors, which can eventually lead to severe direct (or indirect) socio-

33 economic losses (Mckee et al. 1993; Spinoni et al. 2014; Vidal et al. 2009). Droughts occur 

34 virtually everywhere in the world, but their characteristics, such as duration, intensity and 
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35 frequency, vary significantly depending on climate zones (Mirabbasi et al. 2013). 

36 Additionally, it is expected that climate change will accelerate changes in drought 

37 characteristics (Dai 2011; Van Loon et al. 2016). Thus, drought monitoring and early warning 

38 systems at global and local scales have emerged as powerful platforms for preventing and 

39 mitigating the negative effects of drought.

40 Drought is rather different from other water related hazards in terms of its spatio-temporal 

41 characteristics, resulting in structured spatial coverage with varying durations. Moreover, the 

42 spatio-temporal drought patterns may differ substantially by drought intensity. In these 

43 contexts, an exploration of the spatio-temporal drought patterns over different quantiles (i.e. 

44 severity) can serve as a basis to understand the evolution and nature of droughts in space and 

45 time. However, most of existing studies on droughts have not specifically analyzed the 

46 spatio-temporal patterns at different quantiles. Thus, this study will focus on exploring the 

47 underlying structure of drought occurrence and development.

48 Many studies have been conducted to estimate the onset, persistence and termination of 

49 drought events using meteorological and hydrological variables (Ganguli and Ganguly, 2016; 

50 Mo, 2011; Shukla et al., 2011; among others). Drough features such as duration, severity and 

51 intensity are commonly characterized by drought indices, which provide a more 

52 comprehensive perspective for drought monitoring and management compared to the direct 

53 use of hydro-meteorological variables (e.g., precipitation, soil moisture (SM) and streamflow) 

54 (Zargar et al. 2011). Nonetheless, the selection of the drought index for a certain purpose 

55 remains controversial (Farahmand & AghaKouchak 2015). Specifically, the identification of 

56 drought can be attributed to the choice of drought index that, with some limitations, 

57 incorporates different aspects of drought conditions (Hao & Singh 2015). Accordingly, 

58 various drought indices have been proposed to detect different types of droughts. For 

59 example, a meteorological drought index refers to deficits in precipitation and/or evaporation, 
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60 whereas agricultural and hydrological drought indices are based on deficits in SM and 

61 streamflow, respectively (Dracup et al. 1980).

62 The drought indices are mainly used to describe different types of droughts (i.e. 

63 meteorological, agricultural, hydrological, and socioeconomic droughts). They are commonly 

64 derived from a single hydrological variable (e.g., rainfall: the standardized precipitation index 

65 (SPI), and standardized anomaly index (SAI), streamflow: standardized streamflow index 

66 (SSI) and streamflow drought index (SDI), groundwater: standardized water-level index 

67 (SWI) and soil moisture: Standardized soil moisture index (SSI)). On the other hand, there 

68 are several examples that combine two or more variables such as the Palmer drought severity 

69 index (PDSI; Palmer, 1965), standardized precipitation evapotranspiration index (SPEI; 

70 Vicente-Serrano et al., 2010), surface water supply index (SWSI; Shafer and Dezman, 1982) 

71 and multivariate standardized drought index (MSDI; Hao and AghaKouchak, 2013). Here, we 

72 only introduced some of the drought indices, and would suggest that for more details readers 

73 are kindly referred to Svoboda and Fuchs (2017). Among many drought indices, the SPI, 

74 proposed by Mckee et al., (1993), has been widely adopted as a tool for monitoring long-term 

75 drought conditions at multiple time scales. More specifically, the advantage of the SPI 

76 method lies in its relative simplicity of computation and ease of interpretation, and the SPI 

77 approach is particularly useful in predicting drought onset (Hao & AghaKouchak 2013). 

78 Thus, the World Meteorological Organization (WMO) endorsed the SPI as a standard 

79 drought indicator (Hayes et al. 2011). The fundamental idea behind the SPI can be applied to 

80 other hydrometeorological variables with the objective of building a standardized drought 

81 index (Van Loon 2015; Kumar et al. 2016). 

82 Each drought index has limitations and strengths in measuring drought conditions. For 

83 instance, previous studies have shown that the SPI is more likely to detect the emergence of 

84 drought conditions, whereas drought persistence can be more effectively identified based on 
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85 the SM deficit (Mo 2011). In other words, drought information based on a single index may 

86 not be sufficient to provide an integrated picture of different types of drought (Kao & 

87 Govindaraju 2010). This issue has, in turn, led to the need for a combination of multiple 

88 drought indices that are derived from different hydrologic variables including rainfall, SM, 

89 groundwater and streamflow. Such hydrological variables particularly have been used to 

90 construct a joint drought index to characterize the complex nature of drought (Mirabbasi et al. 

91 2012; Hao & Singh 2015).

92 Considering that drought is a multidimensional phenomenon, combining multiple variables 

93 (e.g., from precipitation to SM) is beneficial for successful drought preparedness and 

94 mitigation, and particularly useful for communication purposes between different types of 

95 drought. Here, we adopt the MSDI proposed by Hao and AghaKouchak (2013) that can 

96 combine meteorological and agricultural droughts, and the composite drought index was then 

97 grouped by the hierarchical agglomerative clustering approach for classifying regional 

98 patterns. Over the past decade, many researchers have proposed statistical models to build a 

99 multivariate drought index. In the context of multivariate analysis, copulas have been used in 

100 a wide range of hydrological studies such as multivariate drought frequency analysis (e.g., 

101 Ekanayake and Perera, 2014; Kao and Govindaraju, 2010; Kwon et al., among others), flood 

102 frequency/risk analysis (e.g., Favre et al., 2004; Jongman et al., 2014; Zhang and Singh, 

103 2006), and rainfall simulation (Li et al. 2013). In this study, because of the interdependence 

104 and interaction between rainfall and SM, the copula-based MSDI (Hao and AghaKouchak, 

105 2013) is used to consider the two indices (i.e., the SPI and SSI) jointly in the context of a 

106 multivariate probability distribution.

107 A key aim of this study is to explore a spatio-temporal drought pattern on the regional scale. 

108 A number of previous studies have been carried out to investigate regional drought patterns 

109 using cluster analysis, principal component analysis (PCA) or a combination of the two 
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110 techniques. Among them, clustering analysis, also known as an unsupervised classification 

111 model, is widely used to classify drought patterns into certain categories according to their 

112 relationships; such analysis can identify specific spatio-temporal patterns within the cluster 

113 (Shamshirband et al. 2015). Santos et al. (2010) employed K-means clustering and PCA to 

114 assess spatial and temporal patterns of the SPI series, whereas Yoo et al. (2012) applied the 

115 K-means approach to partition their study region into several sub-regions based on bivariate 

116 drought attributes. Furthermore, spatio-temporal drought patterns were regionally 

117 summarized by combining a quantile regression model and hierarchical agglomerative 

118 clustering algorithm (Shiau & Lin 2016; Yang et al. 2017). Despite the above-mentioned 

119 potential uncertainty in identifying drought features using a drought index based on a single 

120 variable, clustering analysis has not been applied extensively for a multivariate drought 

121 index. In other words, most studies on clustering analysis were dedicated to the delineation of 

122 homogeneous regions using a single drought index or their drought characteristics (e.g., 

123 duration, severity, and frequency).

124 Moreover, given that the nonstationarity in drought episodes is of increasing concern, the 

125 nonparametric Mann-Kendall (MK) test has been widely used to identify significant changes 

126 in drought pattern (Subash & Ram Mohan 2011; Güner Bacanli 2017). Despite its popularity 

127 in the hydrological community, the MK approach cannot be applied to explore the temporal 

128 variability of hydrologic variables at various quantiles of the distribution (Shiau & Lin 2016), 

129 which is important for water resources management, especially for extreme rainfall that 

130 translates into both droughts and floods. In this regard, this study uses a quantile regression 

131 model proposed by Koenker and Bassett (1978) to explore the non-Gaussian distribution of 

132 trend in drought characteristics in terms of the predefined quantiles (e.g., moderate, severe 

133 and extreme drought).
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134 The main contributions of this study are threefold: (1) we propose to use a global reanalysis 

135 SM dataset to derive the SSI drought indices and its use to explore the transition from 

136 meteorological to agricultural droughts; (2) we propose quantile regression model-based 

137 spatio-temporal drought analysis at different quantiles, and (3) we classify spatio-temporal 

138 drought patterns using the multivariate drought index and the hierarchical agglomerative 

139 clustering approach, covering the period 1986-2016 across South Korea.

140 A brief background of this study was presented in this section. In the following section, we 

141 illustrate the precipitation and SM data and further describe the drought indices considered in 

142 this study. The theoretical aspects of modeling approaches including quantile regression, 

143 copula function and clustering analysis are provided in Section 3. The spatio-temporal 

144 analysis of the drought indices over South Korea obtained from this study is illustrated in 

145 Section 4, followed by conclusions and future tasks in Section 5.

146

147 2. Hydrologic Data and Drought Indices

148 2.1. Precipitation and Soil Moisture Data

149 The historical daily precipitation data measured at 55 weather stations over South Korea, 

150 which are operated by Korea Meteorological Administration (https://web.kma.go.kr/eng/), are 

151 collected for the period 1986-2016. Figure 1 shows the locations of weather stations used in 

152 this study. Additionally, a global SM data set from the European Centre for Medium-Range 

153 Weather Forecasts (ECMWF) are used. ECMWF releases global reanalysis SM datasets (i.e. 

154 ERA-Interim) daily in quasi-real time with high spatial resolution, in 6-hour intervals, at four 

155 depths (i.e., 0-7, 7-28, 28-100 and 100-289 cm) (Albergel et al. 2012). ERA-Interim 

156 reanalysis data provides a spatial resolution of approximately 25 km covering the period 

157 1979-present and can be accessed from https://www.ecmwf.int/. The accuracy of the ERA-

158 Interim reanalysis data was assessed against in-situ observations from 117 stations across the 
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159 world by Albergel et al. (2012). Their results revealed robustness for various climate 

160 conditions with a reasonable level of accuracy; similar results were also achieved based on 

161 our preliminary analysis in the study area (see Figure S1). The Pearson correlation 

162 coefficients between the original ERA-Interim and the currently available in-situ SM data 

163 over all of South Korea are reasonably high, ranging from 0.60 to 0.75.

164 In our study, SM data are collected at 6-hour intervals (0:00, 6:00, 12:00 and 18:00 UTC) 

165 from the locations with centroids nearest to the weather stations and averaged to obtain a 

166 daily mean SM time series. The root-zone SM has a significant impact on crop yield so that it 

167 is evident that crop growth and root development should take into consideration in designing 

168 agricultural drought indices (Narasimhan & Srinivasan 2005). In this respect, the ERA-

169 Interim SM data at the third layer (28-100 cm) are mainly used as the best proxy of the root-

170 zone SM in this study. Both rainfall and SM data are then accumulated on a monthly basis for 

171 subsequent study.

172 [Fig. 1; Tab. 1]

173

174 2.2. SPI and SSI Drought Indices

175 The SPI has been widely used to effectively measure and detect the extent of a deficit of 

176 precipitation, providing locally specific early warnings of drought (Clayton 1978). Its 

177 popularity stems from its flexibility and ease of use for detecting droughts at multiple time 

178 scales (Ganguli & Ganguly 2016). Since the SPI was designed to provide a dimensionless 

179 index, SPI values can often be used to spatio-temporally compare an overall view of the 

180 drought at a national or global scale for a range of practical applications (Djerbouai & Souag-

181 Gamane 2016). To compute the SPI, daily precipitation data is first aggregated at different 

182 timescales (e.g., 3, 6, 12, 24 or 36 months). In this study, we primarily focus on the SPI at 3- 

183 and 6-month timescales (hereinafter, SPI-3/6) to investigate the characteristics of 
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184 meteorological droughts and their spatio-temporal patterns. The aggregated precipitation data 

185 are typically fitted to theoretical distribution functions such as the gamma and Pearson type 

186 III distributions (Farahmand & AghaKouchak 2015). The SPI is then computed by 

187 transforming the cumulative probability distribution into standardized normal variates with 

188 zero mean and standard deviation equal to one (Mckee et al. 1993; Guttman 1999). However, 

189 because the optimal probability distribution of rainfall can vary substantially, a parametric 

190 approach is less flexible, leading to inconsistent results (Vidal et al. 2009; Kumar et al. 2016; 

191 Farahmand & AghaKouchak 2015). In other words, the SPI values are inherently susceptible 

192 to the selection of a distribution function. Therefore, we employ a non-parametric kernel 

193 density estimation approach to reduce the sampling error associated with the choice of 

194 distribution functions. While the SPI is mainly used to identify meteorological drought, 

195 agricultural drought is generally represented by the SM deficit. Accordingly, the SSI, known 

196 as an agricultural drought index monitoring the extent and degree of SM, plays a 

197 complementary role in a comprehensive review of drought conditions. Similarly, the kernel 

198 density estimation approach was used to transform SM data into the SSI. In this study, we 

199 extracted information on the durations and severities (i.e., deficit volumes) from SPI and SSI 

200 time series. Drought duration refers to the periods of the continuously negative phase, 

201 whereas drought severity is the sum of cumulative deficits over the corresponding duration 

202 (Kwon et al., 2016). Table 2 shows the SPI drought criteria defined by Mckee et al. (1993). 

203 Note that the same drought severity categories are subsequently applied to the SSI and MSDI.

204 [Tab. 2]

205

206 3. Methodology

207 3.1. Quantile Regression
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208 This study aims to assess not only the overall trends of drought characteristics but also the 

209 non-Gaussian distribution of trends in drought duration, severity and frequency at various 

210 levels of quantiles. The first-order quantile regression (Koenker and Bassett, 1978) is applied 

211 to identify temporal trends in different drought characteristics. The τth quantile regression 

212 estimate is computed by minimizing Equation 1 as follows:

213 (1)𝑚𝑖𝑛∑
𝑖 :𝑦𝑖 ≥   𝛼𝜏 + 𝛽𝜏𝑥𝑖

𝜏|𝑦𝑖 ― 𝛼𝜏 ― 𝛽𝜏𝑥𝑖| + ∑
𝑖: 𝑦𝑖 <   𝛼𝜏 + 𝛽𝜏𝑥𝑖

(1 ― 𝜏)|𝑦𝑖 ― 𝛼𝜏 ― 𝛽𝜏𝑥𝑖|

214 …where ατ and βτ are regression coefficients associated with the quantile τ, ranging between 

215 0 and 1, and y indicates the drought indices (i.e., the SPI and SSI). In this study, the null 

216 hypothesis of a zero slope for drought characteristics was tested at a level of 95% at quantile 

217 τ.

218

219 3.2. Overview of the Copula Function

220 In order to better represent the interdependence between precipitation and SM, we used the 

221 MSDI based on the joint distribution of two drought indices (i.e., the SPI and SSI). Among 

222 various types of multivariate models, the copula has been widely applied in various areas 

223 including hydrological and climatological applications since the copula can effectively link 

224 the marginal distributions together to construct the joint distribution (Kwon et al. 2016; Kao 

225 & Govindaraju 2010; Favre et al. 2004). From a modeling viewpoint, Sklar’s Theorem (Sklar 

226 1959) allows us to model the marginal distributions separately from the dependence structure, 

227 which is described by a copula parameter C (Rüschendorf 2009; Lall et al. 2016; Requena et 

228 al. 2013; Salvadori & De Michele 2004). The proposed approach provides a useful 

229 framework to assess overall drought conditions since the MSDI can integrate different 

230 aspects of drought dynamics, covering meteorological and agricultural droughts. Here, we 

231 briefly introduce the concept of the copula. For more details, readers are kindly referred to 

232 Joe (1997); Nelsen (1999); and Salvadori and De Michele (2004). Let the SPI and the SSI be 
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233 continuous random variables X and Y. If a joint distribution exists with the marginal 

234 distribution F(X) and G(Y), then the cumulative joint probability p with a copula C can be 

235 represented as Eq. (2):

236 P(X ≤ x, Y ≤ y) = C[F(X), G(Y)] = p (2)

237 Finally, the cumulative joint probability (p) of the SPI and SSI can be transformed into the 

238 MSDI as follows (Hao & AghaKouchak 2013)…

239 MSDI = φ–(p)  (3)

240 …where φ– is the inverse of the standard normal distribution function. The parameters of the 

241 copula functions are estimated using the maximum likelihood (ML) method, and the optimal 

242 copula for drought variables (i.e., X and Y) is then selected based on the Akaike Information 

243 Criteria (AIC) (Akaike 1974). In this study, an optimal copula for each station is selected 

244 from five copula functions (i.e., Gaussian, t, Clayton, Frank and Gumbel). More details are 

245 found in Li et al., (2013) and Clayton, (2016).

246

247 3.3. Clustering Analysis

248 The hierarchical agglomerative clustering analysis is adopted to classify spatio-temporal 

249 drought patterns into certain categories, which is carried out in the MATLAB environment. 

250 The algorithm, application and implementation of this technique can be found in the literature  

251 (Martinez & Martinez 2004). In this manner, weather stations are partitioned into subsets by 

252 defining a measure of distance or dissimilarity in terms of drought features. In other words, 

253 each category should be mutually exclusive, and the drought characteristics assigned to a 

254 certain category should be as similar as possible. The hierarchical agglomerative clustering 

255 approach begins with a measure of the similarity (or dissimilarity) between the objects (i.e. 

256 the MSDI time series over 55 weather stations) that are initially regarded as an individual 

257 cluster, and the individual clusters are then successively merged until one cluster includes all 
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258 objects. In this study, Ward’s method, which is referred to as an increase of sum-of-squares, 

259 is used to assess the proximity between two clusters…

260 (r, s) =  ||x̄r – xs̄||2 (4)
2𝑛𝑟𝑛𝑠

(𝑛𝑟 + 𝑛𝑠)

261 …where || ||2 is the Euclidean distance, x̄r and x̄s are the centroids of clusters r and s, and nr 

262 and ns are the number of elements in clusters r and s.

263

264 4. Results and Discussion

265 4.1. Drought identification and Relationship between the SPI and SSI

266 To explore drought propagation, we first evaluate cross-correlations between the SPI and SSI 

267 to quantify the lag time over the entire array of weather stations for 3- and 6-month 

268 accumulation periods, as shown in Figure 2 (Samples of cross-correlation between the SPI-n 

269 and SSI-n can be seen in Figure 3). Here, the strongest cross-correlation at each station is 

270 marked by a black dot. In other words, it appears to take one month at most weather stations 

271 (i.e., 50 stations for 3-month and 48 stations for 6-month accumulation periods out of 55 

272 weather stations, respectively) for precipitation deficits to propagate to SM deficits through 

273 the hydrological cycle. In addition to the above drought features, an understanding of drought 

274 persistence, which has an impact on water resources management, is also of great interest for 

275 hydrologists (Meng et al. 2017; Ganguli & Ganguly 2016; AghaKouchak 2015). Drought 

276 persistence can be computed by the length of a dry spell for a certain threshold or by using 

277 temporal autocorrelations (Tatli 2015).

278 [Figs. 2-3]

279 We further explore a monthly variation of the correlation coefficient between the SPI-3 and 

280 SSI-3 for the 55 weather stations, and the lagged relationships between the drought indices 

281 are additionally examined to capture any possible delayed response. As shown in Figure 4, 

282 the SPI is in general positively correlated with the SSI, thus confirming that the deficit of SM 
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283 is substantially related to the meteorological drought (Van Loon 2015). However, there exist 

284 seasonal variations in correlation coefficients, which can be explained by the fact that 

285 agricultural drought in response to the deficit in rainfall may differ significantly, depending 

286 on the season. Furthermore, it can be concluded that the stronger relationship begins when 

287 rainfall starts after a long, dry winter-spring season in South Korea. In this stage, the water 

288 moves both through the soil and over the surface via a range of hydrologic processes such as 

289 base flow, seepage, infiltration and runoff throughout the summer. In contrast, the 

290 relationship weakens as SM content decreases below the wilting point, with the relationship 

291 continuing to weaken until the next wet season. Interestingly, it appears that during a dry 

292 season (winter-spring), there is a more robust relationship between the SPI and the 1-month 

293 lagged SSI. It can be concluded that the SSI has a delayed response to the SPI under dry soil 

294 conditions, whereas for wet soil conditions, the prompt response of the SSI to the SPI is 

295 dominant. In this perspective, it is acknowledged that the characteristics of the transition from 

296 meteorological drought to agricultural drought are significantly dependent on antecedent SM 

297 content over the season. Thus, we should consider the issue of presenting the role of 

298 antecedent SM content in connection with evidence concerning changes in the drought 

299 propagation feature over time.

300 [Fig. 4]

301 We investigate the temporal persistence of the drought indices using the autocorrelation 

302 function representing drought persistence over the entire array of weather stations. As shown 

303 in Figure 5, it is evident that the autocorrelation functions of SSI decrease gradually with 

304 higher degrees of autocorrelation compared to that of the SPI for both accumulation periods. 

305 On the other hand, the results also highlight the potential benefit of using different drought 

306 indices, i.e., the onset of a drought condition can be detected by the meteorological index 

307 (i.e., the SPI) earlier, whereas the SSI seems to be more appropriate for reliably describing 
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308 drought persistence (Farahmand & AghaKouchak 2015; Entekhabi et al. 1996). In this 

309 regard, we introduced a robust framework that allows multiple drought indices to be 

310 combined. The results associated with the combined drought indices are presented in Section 

311 4.3.

312 [Fig. 5]

313

314 4.2. Spatial Pattern of Drought over South Korea

315 For each accumulation period (3- and 6- month), drought events are identified using a 

316 threshold of -1.0 and their spatial distributions along with durations are displayed in Figure 6. 

317 The cokriging method (Pebesma 2004) is hereinafter employed to obtain the regional 

318 distribution of drought characteristics. Compared to the SPI, the SSI shows less frequent 

319 droughts for both accumulation periods, which can be attributed to the stronger persistence 

320 (i.e., a smaller fluctuation) that is more likely to be characterized by the SSI (Farahmand & 

321 AghaKouchak 2015). Furthermore, more frequent drought events appear to occur at a shorter 

322 timescale for both drought indices (Figures 6c and g), due to the relatively weaker persistence 

323 (Figures 6d and h). It was also clearly seen that drought duration of the SSI is significantly 

324 longer than that of the SPI, and the difference becomes more distinct for a longer timescale. 

325 In other words, the 3-month drought indices pertain negative values more frequently than do 

326 the 6-month drought indices, and the SPI recovers to wet states more quickly than does the 

327 SSI. More frequent drought events with the threshold -1.0 particularly stand out in western 

328 central South Korea for the SPI, while an increased frequency of moderate droughts is 

329 identified in the southern and northern parts of South Korea.

330 [Fig. 6]

331 Next, drought characteristics such as duration and severity for the SPI and SSI are extracted 

332 and their spatial distributions are presented in Figures 7 and 8. For SPI-3, a longer drought 
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333 duration is predominantly identified in the northern and southern parts of South Korea and 

334 the magnitude of drought severity is found to be similar to the spatial distribution of drought 

335 duration. Yet, as the accumulation period increases (i.e., SPI-6), the spatial extent of droughts 

336 is partially extended to the east coast. As expected, for both drought accumulation periods, 

337 the spatial distribution of drought over South Korea clearly reveals the strong spatial 

338 coherence between drought duration and severity. That is, regions with a prolonged drought 

339 tend to experience more severe droughts, leading to more severe effects on water resource 

340 management and vice versa. Additionally, there is a tendency for duration and severity to 

341 increase in proportion to the accumulation period for either SPI or SSI. As shown in Figures 

342 7-8, there are some differences in the spatial distribution of duration and severity between the 

343 SSI and SPI. It can be seen that the SSI consistently yields higher drought durations and 

344 severities, compared with the SPI. Again, this may be attributed to the stronger persistence of 

345 the SSI. Locally significant severe droughts in terms of both drought duration and severity 

346 are primarily represented in the southeastern region. Interestingly, the spatial distribution of 

347 drought characteristics associated with the SPI is more dependent on the accumulation 

348 periods (see Figure 7), while the SSI is less sensitive to the accumulation periods (see Figure 

349 8).

350 [Figs. 7-8]

351 The entire time series of the SPI-6 and SSI-6 were divided into two halves (i.e. 1st period 

352 (1987-2001) and 2nd period (2002-2016)), and the drought events and their durations and 

353 severities were extracted using a threshold of -1.5. Note that the values given here are the 

354 average values over the entire weather stations during that period. For the SPI-6 (Figures 9a-

355 c), the number of drought events are significantly decreased in the second half, while the 

356 duration and severity are slightly increased. It can be concluded that the decreasing trend in 

357 the drought events is apparently due to an increasing trend in precipitation since the SPI 
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358 represents deficits in precipitation. Relative to the decreasing trend in the number of drought 

359 events, a severe and prolonged drought has been observed over the last decade due to a recent 

360 increase in interannual climate variability (Nam et al. 2015). On the other hand, for the SSI-6 

361 (Figures 9d-f), a drought with more pronounced frequency and severity compared to the SPI-

362 6 was found in the second half. It may be the consequence of a significant increasing trend in 

363 temperature during the recent period while the recent decrease in precipitation may play a 

364 limited role for the tendency toward increased drought frequency and severity.

365 [Fig. 9]

366 The trends in the SPI and SSI time series covering 1986-2016 are further analyzed using a 

367 quantile regression model. The estimated slope parameters for the predefined drought 

368 categories (Table 2) at 55 weather stations are spatially interpolated. As shown in Figures 10a 

369 and d, for both indices, the trends for moderate drought (i.e., threshold -1.0) showed a 

370 downward tendency in the northern part of South Korea, while an upward trend is dominantly 

371 localized in the southern region. Interestingly, there exist significant differences in the spatial 

372 presence of trends in extreme drought (i.e., threshold -2.0) between the SPI and SSI. More 

373 specifically, the SSI shows a decreasing tendency over the entire region, while there is no 

374 significant difference in the spatial distribution of drought trend over different drought states 

375 for the SPI. In summary, there appears to be a more pronounced decreasing tendency (or 

376 increasing risk) of the drought in the northern part of South Korea. In South Korea, nearly 50-

377 60% of total annual rainfall occurs during the summer monsoon season (Kim et al. 2002). It 

378 has been reported that a general declining trend is evident in the East Asian summer 

379 monsoon, and this tendency appears to be more prevalent since the early 1990s (Li et al. 

380 2017). Similarly, the increased drought risk in the northern part of South Korea may be 

381 linked to weakened summer monsoons over the last three decades, which can be associated 
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382 with stagnation of the monsoon activity in the middle of South Korea, and then retreat toward 

383 a lower latitude (Zhang & Zhou 2015).

384 [Fig. 10]

385

386 4.3. Clustering Analysis on Multivariate Standardized Drought Index (MSDI) 

387 A hierarchical clustering approach is applied to explore regional trends in droughts over the 

388 last three decades. One may consider a direct use of two drought indices for clustering 

389 regional patterns. However, based on our preliminary analysis (see Figures S3-S4), the 

390 distribution of the identified clusters in the SPI and SSI are significantly different, thus 

391 confirming that the direct use of indices together for the clustering may fail to identify 

392 regional patterns of drought. On the other hand, with multi-dimensional data, one can employ 

393 multivariate techniques, such as copulas, which can provide a better estimation for 

394 dependencies among the variables, prior to clustering. Specifically, we introduce the MSDI to 

395 provide a comprehensive perspective of the drought by constructing a joint probability 

396 distribution between the SPI and SSI. We consider two types of elliptical copulas and three 

397 types of Archimedean copulas to model the dependency structure of the drought indices, 

398 namely the student t, Gaussian, Clayton, Frank and Gumbel. As discussed in the 

399 methodology section, the marginal distributions are first specified with the independent 

400 identically distributed (IID) assumption for the drought variables, and the interdependence 

401 between the variables is then described through the copula functions. In this study, it might 

402 be desirable to assume the Gaussian distribution for the marginal distributions for both the 

403 SSI and SPI, since the indices are already normalized to their respective values. A set of 

404 parameters for the MSDI, four parameters in the marginal distribution and one parameter in 

405 the copula function, are estimated by using the maximum likelihood method (Kao & 

406 Govindaraju 2010; Renard & Lang 2007; Bouyé et al. 2000), and the optimal copula 
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407 functions are then selected using the Akaike Information Criteria (AIC) for each weather 

408 station. Among five types of copulas, the Frank copula is generally selected for both 

409 accumulation periods, and the spatial distribution of the selected copula is presented in Figure 

410 S5.

411 We use clustering analysis to explore the presence of a regional trend in drought, and an 

412 important issue with respect to the clustering approach is to determine the number of desired 

413 clusters. To systematically choose the optimum number of clusters with the hierarchical 

414 agglomerative clustering algorithm, the algorithm is recursively applied to the MSDI series 

415 with an increasing number of clusters and the optimum number of clusters is selected by 

416 maximizing (or minimizing) some measure of fitness. This study uses the upper-tail rule, 

417 proposed by Mojena (1977), as a measure of model fitness. The best cut-off level (i.e., the 

418 number of clusters) is determined by the distance analysis of the standardized fusion levels in 

419 a dendrogram. As shown in Figure 11, the inflection points of the MSDI-3 is found at a cut-

420 off level of four (Figure 11a). In other words, the degree of decrease in the standardized 

421 fusion level is negligible for more than four clusters. On the other hand, an inflection point is 

422 found at five clusters for the MSDI-6 (Figure 11b). Therefore, four clusters for the MSDI-3 

423 and five clusters for the MSDI-6 are subsequently selected for further analyses.

424 [Fig. 11]

425 The distribution of the resulting clusters is contiguous rather than spatially separated for both 

426 accumulation periods, as presented in Figure 12. It can be concluded that the results are more 

427 physically interpretable, which can lead to more effective strategies in the development and 

428 implementation of drought management and mitigation plans for certain areas. There is a 

429 notable contrast to the clustering over accumulation periods in the northern part of South 

430 Korea, namely Gyeonggi province and Gangwon province. More specifically, two 

431 subcategories, representing Gyeonggi and Gangwon province, in MSDI-6 are grouped 
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432 together as a category in MSDI-3. For a given cluster, this study further explores different 

433 aspects of drought features such as duration, severity and long-term trends at different 

434 quantile levels.

435 [Fig. 12]

436 The spatially averaged MSDI values over each cluster are shown in Figures 12-13, and their 

437 trends appear to differ significantly between thresholds (or exceedance probabilities; 

438 moderate (-1.0): 0.16, severe (-1.5): 0.07 and extreme (-2.0): 0.02). Compared to the MSDI-6, 

439 more frequent drought events appear to be identified at the MSDI-3, and the number of 

440 drought events for certain drought categories varies over different clusters, as summarized in 

441 Table 3. It is evident that drought duration of the MSDI-6 is significantly longer than that of 

442 the MSDI-3, and the difference becomes more distinct under extreme drought conditions. 

443 Similarly, an overall increase in drought severity in the MSDI-6 is clearly observed. 

444 Specifically, more moderate to severe drought episodes are observed in the northern part of 

445 South Korea, covered by clusters CL-3 and CL-4 for the MSDI-3 and by clusters CL-1 and 

446 CL-2 for the MSDI-6. Clusters CL-2 for the MSDI-3 and CL-4 for the MSDI-6 notably for 

447 the longer duration period and the higher severity are mainly identified along the southern 

448 coast, under moderate to severe drought condition. Spatially aggregated drought features vary 

449 under extreme drought conditions. In other words, CL-3 for the MSDI-3 indicates a much 

450 more extreme drought condition in the northern part of South Korea, and as does CL-4 for the 

451 MSDI-6 in the southern coast.

452 [Tab. 3]

453 Additionally, we explore regional trends over predefined thresholds using a quantile 

454 regression model, as represented in Figures 13-14 and Table 4. Numbers in bold are 

455 statistically significant at the 0.05 level (p < 0.05) in Table 4. For the MSDI-3, CL-1 

456 representing drought in the central eastern region showed no trend for all four levels, while a 
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457 significantly decreasing trend is shown in CL-3. A significantly decreasing trend (or 

458 increasing drought risk) in MSDI-3 was found at CL-2 (e.g., median) and CL-4 (e.g., 

459 extreme, moderate and median). Overall, for a longer-duration MSDI-6, a significant 

460 downward trend becomes more dominant. Furthermore, we explore the past three major 

461 drought episodes over the last three decades (1986-2016), as illustrated in Figures 13-14. As 

462 presented, drought episodes Ep1 (1994-1996), Ep2 (2000-2002) and Ep3 (2013-2015) are 

463 clearly identified as major drought events that have been reported in previous studies (Min et 

464 al. 2003; Kwon et al. 2016; Nam et al. 2015). As for Ep3, the amount of rainfall for this 

465 period was less than 35-50% of the annual mean rainfall (1973-2015) and the estimated 

466 return period was about 26 years (Kwon et al. 2016). Local governments during this dry 

467 period implemented a plan to restrict water usage in many cities across South Korea, thus 

468 confirming that the MSDI can accurately reproduce the historical drought.

469 [Figs. 13-14; Tab. 4]

470

471 5. Concluding remarks

472 Drought is an increasingly important issue in many parts of the world, requiring a hydro-

473 meteorological modeling framework to assess and monitor its complex impact on natural 

474 hazards and associated socio-economic vulnerability. Here, we use two representative 

475 drought indices (the SPI and SSI) to evaluate changes in drought patterns at different spatio-

476 temporal scales. The SPI and SSI, derived from precipitation and SM, respectively, are 

477 compared with each other by describing their individual characteristics as drought indicators 

478 as well as their interdependence and interaction. Furthermore, considering different aspects of 

479 the drought dynamics, this study introduces the MSDI, which is used to consider 

480 meteorological and agricultural droughts jointly in the context of a multivariate probability 

481 distribution. The MSDI derived for each station is then grouped using the hierarchical 
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482 clustering approach for better understanding of the regional features of drought conditions. 

483 The primary conclusions obtained in this study are as follows:

484 1. The transition from meteorological to agricultural drought is clearly identified, but the 

485 degree of their relationship is significantly dependent on the season. Specifically, the 

486 SSI had a 1-month delayed response to the SPI during the dry season (i.e., winter-

487 spring), whereas the response of the SSI to SPI is generally prompt under wet soil 

488 conditions. Thus, one should consider the role of antecedent SM content to improve 

489 characterization of changes in drought propagation.

490 2. The SSI shows less frequent droughts and longer drought duration, due to the gradual 

491 decrease in the autocorrelation functions of SSI along with the higher degree of 

492 autocorrelation, compared to that of the SPI. In this perspective, the onset of a drought 

493 could be detected by the SPI, whereas the SSI appears to be more appropriate for 

494 describing drought persistence. Overall, this is also supported by the fact that the 1-

495 month lag between the SPI and SSI was significant for most stations over the last 

496 three decades (1986-2016).

497 3. In this study, the copula-based MSDI is employed to consider the interdependence 

498 and interaction between rainfall and SM in the context of a multivariate probability 

499 distribution. Moreover, the hierarchical agglomerative clustering approach is 

500 employed to identify the spatial pattern of the MSDI. The distribution of the resulting 

501 clusters is contiguous rather than spatially isolated for both accumulation periods, 

502 contributing to more effective strategies in the development and implementation of 

503 drought management and mitigation plans for certain areas.

504 4. Here, we use a hierarchical clustering approach to the MSDI to investigate regional 

505 trends in drought pattern. By using this approach, the spatio-temporal drought patterns 

506 are clearly captured through the MSDI. Specifically, more drought episodes under 
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507 moderate to severe drought conditions are dominantly observed along the southern 

508 coast of South Korea. We also find persistent drought with a higher level of severity 

509 in the northern part of South Korea, which might be attributable to the significant 

510 decreasing trend (or increasing drought risk) that is noted in the northern part of South 

511 Korea. Overall, for a longer-duration MSDI-6, a significant downward trend has 

512 become more dominant.

513 Given that a drought index more effectively provides the status of drought for decision 

514 making in near-real time compared to raw data, and that a single drought index may not be 

515 sufficient for describing the complex aspects of drought, the findings and approaches used in 

516 this study are expected to provide useful guidelines for detecting the nature of droughts and 

517 contributing to drought preparedness. However, integration with other relevant drought 

518 indicators (e.g., streamflow and ground water) is still needed for a better understanding of 

519 multi-dimensional aspects of drought in future studies. Moreover, future work will also focus 

520 on the extension of data records with multiple sources such as satellite remote sensing data 

521 and multiple hydro-meteorological variables as potential predictors.

522
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Figure 1. Topographic map showing the locations of weather stations used in this study. Here, black solid 
lines indicate province boundaries. 
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Figure 2. Heat maps showing cross-correlation coefficients between SPI and lagged SSI over the entire array 
of weather stations. Here, a) and b) represent accumulation periods of 3 and 6 months, respectively. 
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Figure 3. Samples of cross-correlation between SPI and SSI for 3- and 6-month time scale. 
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Figure 4. Boxplots of the Pearson correlation coefficients for identifying time-lagged relationships between 
the SPI-3 and SSI-3 time series on a monthly basis across all stations. 
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Figure 5. Temporal autocorrelation functions of SPIs and SSIs representing drought persistence with respect 
to different time lags. 
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Figure 6. Characteristics of SPI/SSI-n drought events based on a threshold of -1.0 (moderate drought): a-b 
and e-f show the spatial distributions of drought events across South Korea along with their boxplots (c and 

g), and their corresponding average drought durations are presented in d and h. 
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Figure 7. Spatial distribution patterns of meteorological drought (SPI-n) duration and severity using a 
threshold of -1.0 (moderate drought). 
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Figure 8. Spatial distribution patterns of agricultural drought (SSI-n) duration and severity using a threshold 
of -1.0 (moderate drought). 
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Figure 9. Comparison of drought variables (i.e. frequency, duration and severity) between the first half 
(1987-2001) and second half (2002-2016) of the period 1987-2016. 
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Figure 10. Spatial distribution of trends in SPI-6 and SSI-6 at different quantile levels. 
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Figure 11. Standardized fusion levels corresponding to the number of clusters for MSDI-3 and MSDI-6. 

396x132mm (300 x 300 DPI) 

Page 37 of 45

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review Only

 

Figure 12. Spatial distribution of clusters for the MSDI over South Korea. Left panel, MSDI-3; right panel, 
MSDI-6. 
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Figure 13. Regional trends of MSDI-3 corresponding to each cluster and their trends over different 
thresholds based on a quantile regression. Here, blue bars denote three major drought episodes over the 

past three decades. 
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Figure 14. Regional trends of MSDI-6 corresponding to each cluster and their trends over different 
thresholds based on a quantile regression. Here, blue bars denote three major drought episodes over the 

past three decades. 
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Table 1. Rainfall stations used in this study and their annual rainfall.

Rainfall (mm) Rainfall (mm)Sta.
No Sta. Name Lat.

(N)
Lon.
(E)

Alt.
(m) Annual NDJ FMA MJJ ASO

Sta. 
No Sta. Name Lat.

(N)
Lon.
(E)

Alt.
(m) Annual NDJ FMA MJJ ASO

90 Sokcho 38.25 128.56 18.1 1,386 142 207 653 384 203 Icheon 37.26 127.48 78.0 1,277 109 273 631 264
100 Daegwallyeong 37.69 128.76 772.6 1,765 150 274 897 444 211 Inje 38.06 128.17 200.2 1,394 120 241 786 247
101 Chuncheon 37.90 127.74 76.5 1,356 70 205 850 231 212 Hongcheon 37.68 127.88 140.0 1,520 119 383 757 262
105 Gangneung 37.75 128.89 26.0 1,451 154 222 653 422 221 Jecheon 37.16 128.19 259.8 1,463 113 384 705 260
108 Seoul 37.57 126.97 85.8 1,453 69 214 919 251 226 Boeun 36.49 127.73 175.0 1,163 110 231 595 228
112 Incheon 37.48 126.62 68.2 1,237 64 194 742 238 232 Cheonan 36.78 127.12 81.5 1,445 96 351 750 248
114 Wonju 37.34 127.95 148.6 1,346 73 203 819 252 235 Boryeong 36.33 126.56 15.5 1,536 127 384 737 288
119 Suwon 37.27 126.99 34.1 1,327 73 207 803 244 236 Buyeo 36.27 126.92 11.3 1,524 107 340 803 274
127 Chungju 36.97 127.95 116.3 1,239 75 199 721 244 238 Geumsan 36.11 127.48 170.4 1,337 58 210 818 251
129 Seosan 36.78 126.49 28.9 1,273 91 219 714 249 243 Buan 35.73 126.72 12.0 1,409 68 202 893 246
130 Uljin 36.99 129.41 50.0 1,155 133 197 508 318 244 Imsil 35.61 127.29 247.9 1,361 74 215 810 263
131 Cheongju 36.64 127.44 58.7 1,242 83 203 717 240 245 Jeongeup 35.56 126.87 69.8 1,197 60 189 729 218
133 Daejeon 36.37 127.37 68.9 1,366 97 225 792 252 247 Namwon 35.41 127.33 132.5 1,362 65 209 843 245
135 Chupungnyeong 36.22 127.99 243.7 1,897 136 484 931 346 260 Jangheung 34.69 126.92 45.0 1,412 82 231 847 253
138 Pohang 36.03 129.38 2.3 1,850 144 479 906 322 262 Goheung 34.62 127.28 53.1 1,308 89 219 767 233
140 Gunsan 35.99 126.71 23.2 1,554 97 282 873 302 272 Yeongju 36.87 128.52 210.8 1,238 78 191 718 251
143 Daegu 35.89 128.62 53.5 1,233 80 258 673 222 273 Mungyeong 36.63 128.15 170.6 1,230 93 203 690 244
146 Jeonju 35.82 127.15 61.4 1,298 77 236 747 237 277 Yeongdeok 36.53 129.41 42.1 1,358 97 235 773 254
152 Ulsan 35.56 129.32 83.2 1,309 88 230 744 247 278 Uiseong 36.36 128.69 81.8 1,289 98 220 746 225
156 Gwangju 35.17 126.89 72.4 1,091 68 199 604 220 279 Gumi 36.13 128.32 48.9 1,222 113 211 661 237
159 Busan 35.10 129.03 69.6 1,073 69 210 589 205 281 Yeongcheon 35.98 128.95 93.8 1,352 107 226 774 244
162 Tongyeong 34.85 128.44 32.3 1,078 107 202 505 263 284 Geochang 35.67 127.91 226.0 1,327 124 226 722 254
165 Mokpo 34.82 126.38 38.0 1,015 59 189 576 191 285 Hapcheon 35.57 128.17 32.0 1,348 103 229 772 243
168 Yeosu 34.74 127.74 64.6 1,185 86 210 668 221 288 Miryang 35.49 128.74 11.2 1,485 106 310 804 265
170 Wando 34.40 126.70 35.2 1,183 115 227 562 279 289 Sancheong 35.41 127.88 138.1 1,448 103 355 735 254
192 Jinju 35.21 128.12 30.2 1,243 105 211 688 240 294 Geoje 34.89 128.60 45.4 1,322 75 255 748 244
201 Ganghwa 37.71 126.45 47.0 1,075 68 200 597 210 295 Namhae 34.82 127.93 43.7 1,288 77 241 742 230
202 Yangpyeong 37.49 127.49 48.0 1,293 105 218 740 231           
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Table 2. The SPI (SSI) drought severity classification and interpretation.

SPI values Drought category

≥ 2.0 Extremely wet
1.5 to 1.99 Severely wet
1.0 to 1.49 Moderately wet
0.99 to -0.99 Near normal
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Severely dry
≤ -2.0 Extremely dry
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Table 3. Summary of drought episodes based on clustering analysis.

Number of Events Duration Severity
Threshold

CL-1 CL-2 CL-3 CL-4 CL-5 CL-1 CL-2 CL-3 CL-4 CL-5 CL-1 CL-2 CL-3 CL-4 CL-5

MSDI-3

Moderate 33 29 41 34 　 3.4 4.5 3.0 3.5 　 5.5 7.2 4.6 5.6 

Severe 22 25 26 26 　 2.6 2.8 2.2 2.5 　 5.1 5.4 4.2 4.8 

Extreme 11 13 7 11 　 1.8 1.6 2.3 1.6 　 4.4 3.8 5.8 3.9 　

MSDI-6

Moderate 25 25 23 20 24 4.6 4.8 5.2 6.4 5.0 7.1 7.6 8.3 10.3 8.2 

Severe 17 20 16 17 19 2.6 2.7 3.9 3.8 3.8 5.4 5.3 7.6 7.4 7.4 

Extreme 7 7 11 9 12 3.1 2.7 2.3 3.3 2.0 7.5 6.6 5.3 7.5 4.7 
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Table 4. Summary of the slope obtained from a quantile regression model at four different 
classes. Numbers in bold are statistically significant at the 0.05 level.

MSDI-3 (× 10-3) MSDI-6 (× 10-3)
Cluster

Extreme Severe Moderate Q50 Extreme Severe Moderate Q50

CL-1 1.14 0.07 -0.79 -1.21 -3.55 -3.17 -1.60 -2.00
CL-2 1.13 -0.34 -0.07 -1.39 -3.63 -3.07 -3.19 -1.82
CL-3 -3.51 -3.29 -1.79 -1.78 -1.36 -1.15 -1.11 -1.96
CL-4 -2.21 -0.77 -1.70 -2.28 0.09 -0.13 -1.10 -1.92
CL-5 -2.69 -1.49 -1.32 -2.37
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Spatio-temporal drought patterns of multiple drought indices based on 
precipitation and soil moisture: A case study in South Korea

Moonhyuk Kwon, Hyun-Han Kwon* and Dawei Han

We explore the spatio-temporal characteristics of meteorological and agricultural 

droughts, respectively, as well as their relationships over the past three decades 

(1986-2016). Further, the hierarchical agglomerative clustering approach is employed 

to identify the spatial pattern of the combined drought indices (the SSI and SPI) in 

South Korea. 
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