880 research outputs found

    On the Classification of Automorphic Lie Algebras

    Get PDF
    It is shown that the problem of reduction can be formulated in a uniform way using the theory of invariants. This provides a powerful tool of analysis and it opens the road to new applications of these algebras, beyond the context of integrable systems. Moreover, it is proven that sl2-Automorphic Lie Algebras associated to the icosahedral group I, the octahedral group O, the tetrahedral group T, and the dihedral group Dn are isomorphic. The proof is based on techniques from classical invariant theory and makes use of Clebsch-Gordan decomposition and transvectants, Molien functions and the trace-form. This result provides a complete classification of sl2-Automorphic Lie Algebras associated to finite groups when the group representations are chosen to be the same and it is a crucial step towards the complete classification of Automorphic Lie Algebras.Comment: 29 pages, 1 diagram, 9 tables, standard LaTeX2e, submitted for publicatio

    Decoherence can be useful in quantum walks

    Full text link
    We present a study of the effects of decoherence in the operation of a discrete quantum walk on a line, cycle and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the particle is becoming more delocalised with each step. However, the effect of a small amount of decoherence is to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms. Specifically, we observe a highly uniform distribution on the line, a very fast mixing time on the cycle, and more reliable hitting times across the hypercube.Comment: (Imperial College London) 6 (+epsilon) pages, 6 embedded eps figures, RevTex4. v2 minor changes to correct typos and refs, submitted version. v3 expanded into article format, extra figure, updated refs, Note on "glued trees" adde

    Simulation of quantum random walks using interference of classical field

    Full text link
    We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters and photodetectors. Our model enables us to simulate a quantum random walk with use of the wave nature of classical light fields. Furthermore, the proposed set-up allows the analysis of the effects of decoherence. The transition from a pure mean photon-number distribution to a classical one is studied varying the decoherence parameters.Comment: extensively revised version; title changed; to appear on Phys. Rev.

    An Outcome Evaluation of the Implementation of the Triple P – Positive Parenting Program in Hong Kong

    Get PDF
    The present study evaluated the effectiveness of the Positive Parenting Program (Triple P) with a sample of Chinese parents of children with early onset conduct related problems in Hong Kong. The participants consisted of 91 parents whose children attended maternal and child health centers and child assessment centers for service, and were between three to seven years old. Participants were randomly assigned to the intervention (TP) and a waitlist control group (WL. There was no significant difference in pre-intervention measures between the two groups. However, at post intervention, participants in the TP group reported significantly lower levels of child behavior problems, lower dysfunctional parenting styles, and higher parent sense of competence, compared to the WL group. Implications of these findings for the use of Triple P with families of Chinese descent are discussed

    High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy

    Full text link
    Our knowledge of the high-energy universe is undergoing a period of rapid change as new astronomical detectors of high-energy radiation start to operate at their design sensitivities. Now is a boomtime for high-energy astrophysics, with new discoveries from Swift and HESS, results from MAGIC and VERITAS starting to be reported, the upcoming launches of the gamma-ray space telescopes GLAST and AGILE, and anticipated data releases from IceCube and Auger. A formalism for calculating statistical properties of cosmological gamma-ray sources is presented. Application is made to model calculations of the statistical distributions of gamma-ray and neutrino emission from (i) beamed sources, specifically, long-duration GRBs, blazars, and extagalactic microquasars, and (ii) unbeamed sources, including normal galaxies, starburst galaxies and clusters. Expressions for the integrated intensities of faint beamed and unbeamed high-energy radiation sources are also derived. A toy model for the background intensity of radiation from dark-matter annihilation taking place in the early universe is constructed. Estimates for the gamma-ray fluxes of local group galaxies, starburst, and infrared luminous galaxies are briefly reviewed. Because the brightest extragalactic gamma-ray sources are flaring sources, and these are the best targets for sources of PeV -- EeV neutrinos and ultra-high energy cosmic rays, rapidly slewing all-sky telescopes like MAGIC and an all-sky gamma-ray observatory beyond Milagro will be crucial for optimal science return in the multi-messenger age.Comment: 10 pages, 3 figs, accepted for publication in the Barcelona Conference on Multimessenger Astronomy; corrected eq. 27, revised Fig. 3, added 2 ref

    Omega-3 polyunsaturated fatty acids: Their potential role in blood pressure prevention and management

    Get PDF
    Omega-3 polyunsaturated fatty acids (PUFAs) from fish and fish oils appear to protect against coronary heart disease: their dietary intake is in fact inversely associated to cardiovascular disease morbidity/mortality in population studies. Recent evidence suggests that at least part of their heart protective effect is mediated by a relatively small but significant decrease in blood pressure level. In fact, omega-3 PUFAs exhibit wide-ranging biological actions that include regulating both vasomotor tone and renal sodium excretion, partly competing with omega-6 PUFAs for common metabolic enzymes and thereby decreasing the production of vasocostrincting rather than vasodilating and anti-inflammatory eicosanoids. PUFAs also reduce angiotensin-converting enzyme (ACE) activity, angiotensin II formation, TGF-beta expression, enhance eNO generation and activate the parasympathetic nervous system. The final result is improved vasodilation and arterial compliance of both small and large arteries. Preliminary clinical trials involving dyslipidemic patients, diabetics and elderly subjects, as well as normotensive and hypertensive subjects confirm this working hypothesis. Future research will clarify if PUFA supplementation could improve the antihypertensive action of specific blood pressure lowering drug classes and of statins

    Oral shedding of herpesviruses in HIV-infected patients with varying degrees of immune status

    Get PDF
    Objective: Herpesvirus shedding in the oral cavity was analyzed to determine if presence in the oral compartment correlates with systemic changes in HIV-associated immune deficiency as measured by CD4 + cell counts, plasma HIV viral load and presence of AIDS-defining events. Design: A5254 is a multicenter, cross-sectional, single-visit study to evaluate oral complications of HIV/AIDS and determine the association between clinical appearance, herpesvirus shedding, and immune status as ascertained by CD4 + cell count and HIV viral load. In total, 307 HIV-infected individuals were evaluated and throat wash collected. Methods: Fisher's exact test and Kruskal-Wallis test were used to assess the association between presence of herpesviruses and the state of immunodeficiency as stratified by a combination of CD4 + cell count and HIV viral load. Relationship between pathogens and HIV viral load in plasma was modeled by logistic regression. Results: The presence of cytomegalovirus (CMV) and herpes simplex virus-1 in throat wash was associated with decreased CD4 + cell counts. By contrast, Kaposi sarcoma-associated herpesvirus and Epstein-Barr virus were similarly detectable across all levels of CD4 + cell counts. One unit increase in log 10 (HIV viral load) was associated with 1.31 times higher odds of detecting CMV in throat wash when controlling for oral candidiasis, CD4 + cell count, and sites (95% confidence interval 1.04-1.65, P=0.02). Conclusion: Oral CMV shedding was significantly higher in highly immunocompromised HIV + participants. Our finding supports the recommendations to start antiretroviral therapy independent of CD4 + cell count as this may have the added benefit to lower the risk of herpesvirus transmission among persons infected with HIV and their partners

    Olber's Paradox for Superluminal Neutrinos: Constraining Extreme Neutrino Speeds at TeV-ZeV Energies with the Diffuse Neutrino Background

    Full text link
    The only invariant speed in special relativity is c; therefore, if some neutrinos travel at even tiny speeds above c, normal special relativity is incomplete and any superluminal speed may be possible. I derive a limit on superluminal neutrino speeds v >> c at high energies by noting that such speeds would increase the size of the neutrino horizon. The increased volume of the Universe visible leads to a brighter astrophysical neutrino background. The nondetection of "guaranteed" neutrino backgrounds from star-forming galaxies and ultrahigh energy cosmic rays (UHECRs) constrains v/c at TeV--ZeV energies. I find that v/c <= 820 at 60 TeV from the nondetection of neutrinos from star-forming galaxies. The nondetection of neutrinos from UHECRs constrains v/c to be less than 2500 at 0.1 EeV in a pessimistic model and less than 4.6 at 4 EeV in an optimistic model. The UHECR neutrino background nondetection is strongly inconsistent with a naive quadratic extrapolation of the OPERA results to EeV energies. The limits apply subject to some caveats, particularly that the expected pionic neutrino backgrounds exist and that neutrinos travel faster than c when they pass the detector. They could be improved substantially as the expected neutrino backgrounds are better understood and with new experimental neutrino background limits. I also point out that extremely subluminal speeds would result in a much smaller neutrino background intensity than expected.Comment: 13 pages, 2 figures, fixed titl

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
    corecore