81 research outputs found

    Design descriptions in the development of machine learning based design tools

    Get PDF
    Applications of machine learning technologies are becoming ubiquitous in many sectors and their impacts, both positive and negative, are widely reported. As a result, there is substantial interest from the engineering community to integrate machine learning technologies into design workflows with a view to improving the performance of the product development process. In essence, machine learning technologies are thought to have the potential to underpin future generations of data-enabled engineering design system that will deliver radical improvements to product development and so organisational performance. In this paper we report learning from experiments where we applied machine learning to two shape-based design challenges: in a given collection of designed shapes, clustering (i) visually similar shapes and (ii) shapes that are likely to be manufactured using the same primary process. Both challenges were identified with our industry partners and are embodied in a design case study. We report early results and conclude with issues for design descriptions that need to be addressed if the full potential of machine learning is to be realised in engineering design

    Functional maturation of isolated neural progenitor cells from the adult rat hippocampus

    Get PDF
    Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.S., Cool, S.M. & Nurcombe, V. (2002) Int. J. Dev. Biol., 46, 661-670]. In this study, the active and passive electrical properties of both undifferentiated and differentiated adult hippocampal NPCs, from 0 to 12 days in vitro as single-cell preparations, were investigated. Sparsely plated, undifferentiated NPCs had a resting membrane potential of approximate to -90 mV and were electrically inexcitable. In > 70%, ATP and benzoylbenzoyl-ATP evoked an inward current and membrane depolarization, whereas acetylcholine, noradrenaline, glutamate and GABA had no detectable effect. In Fura-2-loaded undifferentiated NPCs, ATP and benzoylbenzoyl-ATP evoked a transient increase in the intracellular free Ca2+ concentration, which was dependent on extracellular Ca2+ and was inhibited reversibly by pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), a P2 receptor antagonist. After differentiation, NPC-derived neurons became electrically excitable, expressing voltage-dependent TTX-sensitive Na+ channels, low- and high-voltage-activated Ca2+ channels and delayed-rectifier K+ channels. Differentiated cells also possessed functional glutamate, GABA, glycine and purinergic (P2X) receptors. Appearance of voltage-dependent and ligand-gated ion channels appears to be an important early step in the differentiation of NPCs

    Continuous Quantum Measurement and the Quantum to Classical Transition

    Get PDF
    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes which affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit. First, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.Comment: 12 pages, 4 figures, Revtex

    Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii

    Get PDF
    Aims: To determine the effect of several wine-associated, phenolic acids on the growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Methods and Results: Growth was monitored in ethanol-containing medium supplemented with varying concentrations of hydroxybenzoic acids (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acids) and hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids). Progressive inactivation was monitored in ethanolcontaining phosphate buffer supplemented in a similar manner to the growth experiments. Hydroxycinnamic acids proved to be more inhibitory to the growth of O. oeni than hydroxybenzoic acids. On the other hand, some acids showed a beneficial effect on growth of Lact. hilgardii. p-Coumaric acid showed the strongest inhibitory effect on growth and survival of both bacteria. Conclusions: Most phenolic acids had a negative effect on growth of O. oeni, for Lact. hilgardii this effect was only noted for p-coumaric acid. Generally, O. oeni was more sensitive to phenolic acid inactivation than Lact. hilgardii. Significance and Impact of the Study: Eight wine-derived, phenolic acids were compared for their effects on wine lactic acid bacteria. Results indicate that phenolic acids have the capacity to influence growth and survival parameters. The differences found between phenolic compounds could be related to their different chemical structures

    Near-infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    Get PDF
    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power

    Cell membrane damage induced by phenolic acids on wine lactic acid bacteria

    Get PDF
    The aim of this work was to investigate the effect of phenolic acids on cell membrane permeability of lactic acid bacteria from wine. Several phenolic acids were tested for their effects on the cell membrane of Oenococcus oeni and Lactobacillus hilgardii by measuring potassium and phosphate efflux, proton influx and by assessing culture viability employing a fluorescence technique based on membrane integrity. The experimental results indicate that hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids) induce greater ion leakages and higher proton influx than hydroxybenzoic acids (p-hydroxibenzoic, protocatechuic, gallic, vanillic, and syringic acids). Among the hydroxycinnamic acids, p-coumaric acid showed the strongest effect. Moreover, the exposure of cells to phenolic acids caused a significant decrease in cell culture viability, as measured by the fluorescence assay, in both tested strains. The results agree with previous results obtained in growth experiments with the same strains. Generally, phenolic acids increased the cell membrane permeability in lactic acid bacteria from wine. The different effects of phenolic acids on membrane permeability could be related to differences in their structure and lipophilic character

    The contribution of corporate social responsibility to organisational commitment

    Get PDF
    This study investigates the relationship between organizational commitment and employee perceptions of corporate social responsibility (CSR) within a model that draws on social identity theory. Specifically, we examine the impact of three aspects of socially responsible behaviour on organizational commitment: employee perceptions of corporate social responsibility in the community, procedural justice in the organization and the provision of employee training. The relationship between organizational commitment and each aspect of CSR is investigated within a model that distinguishes between genders and includes a set of control variables that is drawn from the commitment literature (Meyer et al., 2002). The analysis is based on a sample of 4,712 employees drawn from a financial services company. The results emphasize the importance of gender variation and suggest both that external CSR is positively related to organizational commitment and that the contribution of CSR to organizational commitment is at least as great as job satisfaction.19 page(s
    • …
    corecore