65,725 research outputs found

    Speech Recognition Technology: Improving Speed and Accuracy of Emergency Medical Services Documentation to Protect Patients

    Get PDF
    Because hospital errors, such as mistakes in documentation, cause one sixth of the deaths each year in the United States, the accuracy of health records in the emergency medical services (EMS) must be improved. One possible solution is to incorporate speech recognition (SR) software into current tools used by EMS first responders. The purpose of this research was to determine if SR software could increase the efficiency and accuracy of EMS documentation to improve the safety for patients of EMS. An initial review of the literature on the performance of current SR software demonstrated that this software was not 99% accurate and therefore, errors in the medical documentation produced by the software could harm patients. The literature review also identified weaknesses of SR software that could be overcome so that the software would be accurate enough for use in EMS settings. These weaknesses included the inability to differentiate between similar phrases and the inability to filter out background noise. To find a solution, an analysis of natural language processing algorithms showed that the bag-of-words post processing algorithm has the ability to differentiate between similar phrases. This algorithm is the best suited for SR applications because it is simple yet effective compared to machine learning algorithms that required a large amount of training data. The findings suggested that if these weaknesses of current SR software are solved, then the software would potentially increase the efficiency and accuracy of EMS documentation. Further studies should integrate the bag-of-words post processing method into SR software and field test its accuracy in EMS settings.https://scholarscompass.vcu.edu/uresposters/1273/thumbnail.jp

    Wave propagation in graphite/epoxy laminates due to impact

    Get PDF
    The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity

    Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence

    Get PDF
    Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtained more rapidly than with existing point-by-point iron mapping techniques. However, because the technique is best used at moderate illumination intensities, it is important to adopt a generalized analysis that takes account of different injection levels across a wafer. The technique has been verified via measurement of a deliberately contaminated single-crystal silicon wafer with a range of known iron concentrations. It has also been applied to directionally solidified ingot-grown multicrystalline silicon wafers made for solar cell production, which contain a detectible amount of unwanted iron. The iron images on these wafers reveal internal gettering of iron to grain boundaries and dislocated regions during ingot growth.D.M. is supported by an Australian Research Council QEII Fellowship. The Centre of Excellence for Advanced Silicon Photovoltaics and Photonics at UNSW is funded by the Australian Research Council

    Current understanding of point defects and diffusion processes in silicon

    Get PDF
    The effects of oxidation of Si which established that vacancies (V) and Si self interstitials (I) coexist in Si at high temperatures under thermal equilibrium and oxidizing conditions are discussed. Some essential points associated with Au diffusion in Si are then discussed. Analysis of Au diffusion results allowed a determination of the I component and an estimate of the V component of the Si self diffusion coefficient. A discussion of theories on high concentration P diffusion into Si is then presented. Although presently there still is no theory that is completely satisfactory, significant progresses are recently made in treating some essential aspects of this subject

    Ionization effects due to solar flare on terrestrial ionosphere

    Get PDF
    Sudden frequency deviation ionospheric disturbances related to the flares of May 18 and 19, 1973 were observed from the NASA/MSFC high frequency Doppler sounder array system in Huntsville, Alabama. The results are compared with those observed at Table Mountain near Boulder, Colorado and at the University of Hawaii

    Advancing Learner Autonomy in Tefl Via Collaborative Learning

    Get PDF
    Learner autonomy has been defined as \u27a capacity to control important aspects of one\u27s learning\u27(Benson, 2013, p. 852). In the teaching of additional languages, learner autonomy dates back at least to the 1970s. For instance, Trim, who was a leader in the teaching of additional languages in Europe, stated that a goal of language education was to: make the process of language learning more democratic by providing the con- ceptual tools for the planning, construction and conduct of courses closely geared to the needs, motivations and characteristics of the learner and enabling him [sic] so far as possible to steer and control his own progress. (1978, p. 1

    A model for the onset of oscillations near the stopping angle in an inclined granular flow

    Full text link
    We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupted by the formation of force chains. Low frequency oscillations between ordered and disordered states take place over weakly bumpy bases; higher-frequency oscillations over strongly bumpy bases involve the formation of particle chains that extend to the base and interrupt the phase change. The predicted frequency and amplitude of the oscillations induced by the unstable part of the equation of state are similar to those seen in the simulations and they depend upon the contact stiffness in the same way. Such oscillations could be the source of sound produced by flowing sand

    Fruit and vegetable consumption in Malaysia: a count system approach

    Get PDF
    Food Consumption/Nutrition/Food Safety,
    corecore