5,187 research outputs found

    Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation

    Get PDF
    An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation

    Attention and automation: New perspectives on mental underload and performance

    Get PDF
    There is considerable evidence in the ergonomics literature that automation can significantly reduce operator mental workload. Furthermore, reducing mental workload is not necessarily a good thing, particularly in cases where the level is already manageable. This raises the issue of mental underload, which can be at least as detrimental to performance as overload. However, although it is widely recognized that mental underload is detrimental to performance, there are very few attempts to explain why this may be the case. It is argued in this paper that, until the need for a human operator is completely eliminated, automation has psychological implications relevant in both theoretical and applied domains. The present paper reviews theories of attention, as well as the literature on mental workload and automation, to synthesize a new explanation for the effects of mental underload on performance. Malleable attentional resources theory proposes that attentional capacity shrinks to accommodate reductions in mental workload, and that this shrinkage is responsible for the underload effect. The theory is discussed with respect to the applied implications for ergonomics research

    Innovative Piloting Technique for a Semi-Autonomous UAV Lighter-Than-Air Platform Simulator

    Get PDF
    UAS design has in these years reached a point in which trends and objectives are well beyond the actual test capabilities. The tendency of the past to build and test has clearly been overridden by new design concepts for many reasons, one of these being the scarce or null possibility of testing safety-critical systems such as UAV systems. This is the context in which the Elettra-Twin-Flyer (ETF) Simulator is constantly upgraded and rearranged to incorporate new features and more advanced capabilities. In this paper it is shown how the piloting modes have been differentiated, to improve the airship autonomy and allow path following operations. Innovative piloting tools have been introduced and a new Human-Machine-Interface has been proposed along

    Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance

    Get PDF
    Objective: Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system's ability to decode mental states and compare it with unimodal systems. Approach: We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. Main results: EEG+fNIRS's decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. Significance: Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics

    Telephone conversation impairs sustained visual attention via a central bottleneck

    Get PDF
    Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Failure to Detect Critical Auditory Alerts in the Cockpit: Evidence for Inattentional Deafness

    Get PDF
    Objective: The aim of this study was to test whether inattentional deafness to critical alarms would be observed in a simulated cockpit. Background: The inability of pilots to detect unexpected changes in their auditory environment (e.g., alarms) is a major safety problem in aeronautics. In aviation, the lack of response to alarms is usually not attributed to attentional limitations, but rather to pilots choosing to ignore such warnings due to decision biases, hearing issues, or conscious risk taking. Method: Twenty-eight general aviation pilots performed two landings in a flight simulator. In one scenario an auditory alert was triggered alone, whereas in the other the auditory alert occurred while the pilots dealt with a critical windshear. Results: In the windshear scenario, 11 pilots (39.3%) did not report nor react appropriately to the alarm whereas all the pilots perceived the auditory warning in the no-windshear scenario. Also, of those pilots who were first exposed to the no-windshear scenario and detected the alarm, only three suffered from inattentional deafness in the subsequent windshear scenario. Conclusion: These findings establish inattentional deafness as a cognitive phenomenon that is critical for air safety. Pre-exposure to a critical event triggering an auditory alarm can enhance alarm detection when a similar event is encountered subsequently. Application: Case-based learning is a solution to mitigate auditory alarm misperception

    Exploring the usability of a connected autonomous vehicle human machine interface designed for older adults

    Get PDF
    Users of Level 4–5 connected autonomous vehicles (CAVs) should not need to intervene with the dynamic driving task or monitor the driving environment, as the system will handle all driving functions. CAV human-machine interface (HMI) dashboards for such CAVs should therefore offer features to support user situation awareness (SA) and provide additional functionality that would not be practical within non-autonomous vehicles. Though, the exact features and functions, as well as their usability, might differ depending on factors such as user needs and context of use. The current paper presents findings from a simulator trial conducted to test the usability of a prototype CAV HMI designed for older adults and/or individuals with sensory and/or physical impairments: populations that will benefit enormously from the mobility afforded by CAVs. The HMI was developed to suit needs and requirements of this demographic based upon an extensive review of HMI and HCI principles focused on accessibility, usability and functionality [1, 2], as well as studies with target users. Thirty-one 50-88-year-olds (M 67.52, three 50–59) participated in the study. They experienced four seven-minute simulated journeys, involving inner and outer urban settings with mixed speed-limits and were encouraged to explore the HMI during journeys and interact with features, including a real-time map display, vehicle status, emergency stop, and arrival time. Measures were taken pre-, during- and post- journeys. Key was the System Usability Scale [3] and measures of SA, task load, and trust in computers and automation. As predicted, SA decreased with journey experience and although cognitive load did not, there were consistent negative correlations. System usability was also related to trust in technology but not trust in automation or attitudes towards computers. Overall, the findings are important for those designing, developing and testing CAV HMIs for older adults and individuals with sensory and/or physical impairments
    • …
    corecore