5,300 research outputs found

    A numerical study of laminar flow heat transfer in curved tubes 

    Get PDF

    A General Route for Post-Translational Cyclization of mRNA Display Libraries

    Get PDF
    Cyclic peptides are attractive scaffolds for the design of conformationally constrained molecular therapeutics. Previously, biological display libraries could only be cyclized via disulfide bonds, which are labile and can be reduced in an intracellular environment. In this paper, we construct high diversity, covalently cyclized mRNA display libraries (>10^(13) sequences) and analyze the cyclization reaction using MALDI-TOF MS and unnatural amino acid incorporation. Our route allows the extent of cyclization to be evaluated quantitatively and is broadly applicable to a variety of cyclization chemistries

    Professional doctorates : working towards impact

    Full text link

    Fusiform Rust Trends in East Texas: 1969-1987

    Get PDF
    Five surveys of pine plantations in East Texas over an 18-year period (1969-1987) indicated that fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme Birdsall and Snow) infection rates have increased to current levels of about 50% on slash pine (Pinus elliottii Engelm.) and are continuing to increase on loblolly pine (Pinus taeda L.) to 10-15% levels. South. J. Appl. For. 12(4):259-26

    Bombesin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Mammalian bombesin (Bn) receptors comprise 3 subtypes: BB1, BB2, BB3 (nomenclature recommended by the NC-IUPHAR Subcommittee on bombesin receptors, [109]). BB1 and BB2 are activated by the endogenous ligands gastrin-releasing peptide (GRP), neuromedin B (NMB) and GRP-(18-27). bombesin is a tetradecapeptide, originally derived from amphibians. The three Bn receptor subtypes couple primarily to the Gq/11 and G12/13 family of G proteins [109]. Each of these receptors is widely distributed in the CNS and peripheral tissues [73, 109, 236, 265, 226, 348]. Activation of BB1 and BB2 receptors causes a wide range of physiological/pathophysiogical actions, including the stimulation of normal and neoplastic tissue growth, smooth-muscle contraction, feeding behavior, secretion and many central nervous system effects including regulation of circadian rhythm and mediation of pruritus [112, 113, 109, 115, 116, 155, 189, 236]. A physiological role for the BB3 receptor has yet to be fully defined although recently studies suggest an important role in glucose and insulin regulation, metabolic homeostasis, feeding, regulation of body temperature, obesity, diabetes mellitus and growth of normal/neoplastic tissues [73, 157, 203, 332]

    Bombesin receptors in GtoPdb v.2023.1

    Get PDF
    Mammalian bombesin (Bn) receptors comprise 3 subtypes: BB1, BB2, BB3 (nomenclature recommended by the NC-IUPHAR Subcommittee on bombesin receptors, [117, 4]). BB1 and BB2 are activated by the endogenous ligands neuromedin B (NMB), gastrin-releasing peptide (GRP), and GRP-(18-27). bombesin is a tetra-decapeptide, originally derived from amphibians and structurally closely related to GRP. The three Bn receptor subtypes couple primarily to the Gq/11 and G12/13 family of G proteins [117]. Each of these receptors is widely distributed in the CNS and peripheral tissues [80, 117, 261, 290, 248, 375, 114, 164, 165]. Activation of BB1 and BB2 receptors causes a wide range of physiological/pathophysiogical actions, including the stimulation of normal and neoplastic tissue growth, smooth-muscle contraction, respiration, gastrointestinal motility, feeding behavior, secretion and many central nervous system effects including regulation of circadian rhythm, body temperature control, sighing, behavioral disorders and mediation of pruritus [153, 211, 255, 117, 205, 261, 318, 70, 35, 345, 212, 36]. BB3 is an orphan receptor, although some propose it is constitutively active [330]. BB3 receptor knockout studies show it has important roles in glucose and insulin regulation, metabolic homeostasis, feeding, regulation of body temperature, obesity, diabetes mellitus and growth of normal/neoplastic tissues [152, 80, 168, 224, 359, 209]. Bn receptors are one of the most frequently overexpressed receptors in cancers and are receiving increased attention for their roles in tumor growth, as well as for tumour imaging and for receptor-targeted cytotoxicity [211, 288, 9, 167, 171, 172, 135, 202]. Bn receptors are also receiving attention because they are one of the primary neurotransmitters for pruritus [36, 127, 35, 318]

    Bombesin receptors in GtoPdb v.2021.2

    Get PDF
    Mammalian bombesin (Bn) receptors comprise 3 subtypes: BB1, BB2, BB3 (nomenclature recommended by the NC-IUPHAR Subcommittee on bombesin receptors, [115]). BB1 and BB2 are activated by the endogenous ligands neuromedin B (NMB), gastrin-releasing peptide (GRP), and GRP-(18-27). bombesin is a tetra-decapeptide, originally derived from amphibians. The three Bn receptor subtypes couple primarily to the Gq/11 and G12/13 family of G proteins [115]. Each of these receptors is widely distributed in the CNS and peripheral tissues [78, 115, 249, 278, 237, 362]. Activation of BB1 and BB2 receptors causes a wide range of physiological/pathophysiogical actions, including the stimulation of normal and neoplastic tissue growth, smooth-muscle contraction, gastrointestinal motility, feeding behavior, secretion and many central nervous system effects including regulation of circadian rhythm, body temperature control, sighing and mediation of pruritus [149, 202, 244, 115, 196, 249, 306, 68, 34, 332]. A physiological role for the BB3 receptor has yet to be fully defined although recently studies suggest an important role in glucose and insulin regulation, metabolic homeostasis, feeding, regulation of body temperature, obesity, diabetes mellitus and growth of normal/neoplastic tissues [148, 78, 162, 214, 346, 200]. Bn receptors are one of the most frequently overexpressed receptors in cancers and are receiving increased attention for their roles in tumor growth, as well as for tumour imaging and for receptor targeted cytotoxicity [202, 276, 8, 161]

    Evolution of the E(1/21+)−E(3/21+)E(1/2^+_1)-E(3/2^+_1) energy spacing in odd-mass K, Cl and P isotopes for N=20−28N=20-28

    Get PDF
    The energy of the first excited state in the neutron-rich N=28 nucleus 45Cl has been established via in-beam gamma-ray spectroscopy following proton removal. This energy value completes the systematics of the E(1/2^+_1)-E(3/2^+_1) level spacing in odd-mass K, Cl and P isotopes for N=20-28. The results are discussed in the framework of shell-model calculations in the sd-fp model space. The contribution of the central, spin-orbit and tensor components is discussed from a calculation based on a proton single-hole spectrum from G-matrix and pi + rho meson exchange potentials. A composite model for the proton 0d_{3/2}-1s_{1/2} single-particle energy shift is presented.Comment: Phys. Rev. C, in pres

    Charges of Exceptionally Twisted Branes

    Full text link
    The charges of the exceptionally twisted (D4 with triality and E6 with charge conjugation) D-branes of WZW models are determined from the microscopic/CFT point of view. The branes are labeled by twisted representations of the affine algebra, and their charge is determined to be the ground state multiplicity of the twisted representation. It is explicitly shown using Lie theory that the charge groups of these twisted branes are the same as those of the untwisted ones, confirming the macroscopic K-theoretic calculation. A key ingredient in our proof is that, surprisingly, the G2 and F4 Weyl dimensions see the simple currents of A2 and D4, respectively.Comment: 19 pages, 2 figures, LaTex2e, complete proofs of all statements, updated bibliograph
    • …
    corecore