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CHAPTER I

INTRODUCTION

Compared to the relatively simple case of steady flow in a straight 

tube, flow in a curved tube is extremely complex. When a fluid flows 

through a curved tube, a pressure gradient is set up across the tube to 

balance the centrifugal force arising from the curvature, the pressure ' 

near the outer wall being greater than that at the inner wall. Thus, sec

ondary flow patterns, as shown in figure 1, emerge within the cross sec

tion. This secondary circulation is superimposed on the main stream in 

such a way that the resultant flow in the upper and lower halves of the 

tube is helical in nature. Further, the secondary flow effect tends to 

distort the axial velocity profile, shifting the region of maximum axial 

velocity from the center towards the outer wall of the pipe. The total 

frictional loss of energy near the wall increases and the flow experi

ences more resistance in passing through the tube. Also, the viscous 

shear at the outer wall increases, causing the volumetric rate of flow 

to be less for a curved system than for that of a straight pipe at an equal 

axial pressure gradient.

Various experimentalists have collected heat transfer data for cur

ved systems and noted that higher heat transfer coefficients were ob

tained for curved systems than for corresponding straight pipe configu

rations.
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Chemical engineers have a special interest in fluid flow and heat 

transfer in curved channels. Three examples of applications are: 1.) 

coiled tube heat exchanger design, 2.) homogeneous chemical reactor 

design, and 3.) bioengineering investigations.

Heat transfer characteristics of coiled tube heat exchangers are 

known to be superior to those of the conventional straight tube variety. '

Truesdell (22) gives a rigorous discussion of the advantages of coiled 

tube chemical reactors over the more frequently encountered straight 

tube models.

An example of a bioengineering application deals with the investiga

tion seeking the causes of atherosclerosis, a disease of the arterial por

tion of the circulatory system, characterized by the presence of discrete 

plaques, or fatty deposits on the inner walls of curved or bent portions 

of the arteries. An understanding of the transport phenomena encoun

tered in curved tube flow is important in understanding this behavior (20).

An analytical solution to the system of equations describing fluid 

flow and heat transfer in a curved system would be desirable, but the 

mathematical difficulties encountered are overwhelming. Thus, the nu

merical method of attack is the best and possibly the only way to exam

ine the properties of such a system theoretically.

Numerical techniques are in general quite pliable and would in

theory appear to have few limitations, though in practice many problems
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arise preventing their unlimited application. Excessive computer time, 

the intolerable growth of error inherent in the numerical approximation, 

and non-convergence of the numerical equations to the actual equations 

in the mathematical sense of the limit can singly or together invalidate 

the results obtained through numerical calculation. With respect to these 

problems, a preliminary analysis of numerical schemes designed to solvi 

non-linear partial differential equations of three independent variables is 

impossible, at present, for all but the very simplest of cases. For this 

reason, a tolerance for "experimental" mathematical techniques must be 

developed. This is not intended to imply a neglect of sound mathematical 

principles, but is meant to point out that often a suitably chosen trial run 

can decisively rule out an invalid approach to a solution which might be 

impossible to analyze theoretically. Thus, it becomes increasingly ap

parent that the numerical approach places a high value on a thorough un

derstanding of the physical principles associated with the problem under 

consideration The work described in this study is of this nature.

This study presents a numerical solution to a simplified form of the 

equation of energy describing the steady laminar flow heat transfer of 

an incompressible, constant property, Newtonian fluid in motion at high 

Dean numbers in a curved pipe of radius an, coiled in a circle of radius 

R? with constant wall temperature. Numerical results are compared 

with experimental findings contained in the literature, and the effect of
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the distorted axial velocity profile on curved tube heat transfer charac

teristics is demonstrated.



CHAPTER II

LITERATURE REVIEW

EXPERIMENTAL BACKGROUND

Secondary flow patterns generated by the motion of a fluid through 

a curved system were first described by Thompson (21) in 1876. In 

1927, Dean (6) described this secondary motion as an "independent cir

culation, " with the fluid on either side of the plane of symmetry (the 

horizontal plane dividing the tube into two equal sections) not mixing 

during laminar flow.

In 1910, Eustice (8) made the observation that if the velocity of flow 

through a curved system was increased, the curvature of the stream

lines was also increased.

Eustice (9) continued his experimental work by injecting a stream 

of colored dye into a fluid flowing through a glass tube in order to ex

amine and trace the streamlines. Eustice noted that a filament in the 

tube's plane of symmetry approaching the outer wall broke into two 

parts at impact with the wall. These two parts of the color filament 

then flowed in opposite directions around the semi-circular cross sec

tion to the inner wall of the tube and then back into the plane of symme

try. After returning to the inner wall, the filaments were observed to 

remain in their own particular half of the cross section, never crossing 

the plane of symmetry during laminar flow.
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Eustice additionally tried to determine the critical Reynolds num

ber (the Reynolds number at which transition from laminar to turbulent 

flow occurs) for such curved systems, hoping to compare the results 

with known values for straight pipe flow, but realized little success in 

this endeavor.

In 1929, Taylor (19) hypothesized that Eustice's inability to detect 

an increase in the critical Reynolds number for curved systems was due 

to the fact that Eustice had injected his colored filament into the stream 

at the pipe entrance. Thus, the filament had broken up before the curva

ture of the pipe had an opportunity to stabilize the flow. Taylor's final 

conclusion was that the critical Reynolds number as well as the stability 

of the flow was increased by curvature.

Other experimental work concerning flow in curved channels has 

been recorded by Bailey (2) and White (24).

Although little heat transfer data has been collected for curved sys

tems, Kubair and Kuloor (12) have recorded data on pressure drop and 

heat transfer to aqueous solutions of glycerol flowing in different types 

of coiled tubes for laminar flow in the range of Reynolds numbers from 

80-6000. Heat transfer data was taken under the condition of constant 

wall temperature and the results presented as plots relating the arith

metic mean Nusselt number as a function of the Graetz number.

Berg and Bonilla (4) have collected heat transfer data for the
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laminar flow of water, air, and oil through several curved tube con

figurations. Data were taken under the condition of constant wall tem

perature and the results presented in a manner similar to that used by 

Kubair and Kuloor (12).

Seban and McLaughlin (16) present heat transfer data for the lami

nar flow of oil in coiled tubes under the condition of constant heat flux. 

Local values of the Nusselt number as a function of the Graetz number 

are given.

Although the majority of available experimental findings show heat 

transfer results for curved systems to be above corresponding straight 

pipe values, when taken together, the data appear to be scattered, vary

ing over a fairly large range.

THEORETICAL BACKGROUND

Little successful theoretical work has been reported on fluid flow 

in curved systems, and much of what does exist has grown out of experi

mental studies.

Dean's (7) analytical work consisted of an approximation of the 

Navier-Stokes and continuity equations obtained by expanding velocities 

and pressures in a power series of the ratio of the pipe radius to the 

radius of curvature, (a' /R^). Dean confined his study to a section of 

the curved system free from entrance or exit effects and assumed the
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fluid to be incompressible and in streamline flow. Restricting his 

analysis to small (a'/R') or curvature ratios. Dean showed that axial 

pressure gradients are a function of the dimensionless quantity 

Nn (a /R ‘) ' , now commonly referred to as the Dean number. Un- 

fortunately, Dean's solution applied for only very small values of the 

curvature ratio, and thus is restricted to Dean numbers below approxi

mately 50. Dean's results are, though, in good qualitative agreement 

with the experimental observations of Eustice. Dean notes that a com

plete analytical solution, free from restricting assumptions, would be 

extremely difficult, if not impossible to obtain.

Adler (1) applied boundary layer theory to systems of slight curva

ture, treating cases of high Reynolds numbers near the transition zone 

between laminar and turbulent flow. Various assumptions were made 

by Adler concerning the shape of the axial velocity profiles and of the 

secondary flow patterns encountered in the cross section. Adler's 

solution provides estimates of the variation of velocities with pressure 

gradient and curvature ratio in this transition zone. Although Adler's 

results are reliable at higher Dean numbers than the analytical solution 

provided by Dean, questionable results are obtained for Dean numbers 

in excess of 200.

Truesdell (22) in 1963, adapted the Navier-Stokes and continuity 

equations to describe fully developed laminar flow through helical
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conduits of circular and elliptical cross section. A relaxation technique 

was used to solve a numerical approximation of these equations. Numeri 

cal solutions in the form of an axial velocity profile and a stream functior 

describing velocities in the cross sectional plane were obtained on a 

digital computer. Truesdell presented ten numerical solutions, covering 

cases with Dean numbers up to 200. For Dean numbers above 200, the 

numerical method employed was found to be unstable.

Rogers (14) solved the Navier-Stokes and continuity equations numeri 

cally on a digital computer for the case of steady flow of an incompressib 

Newtonian fluid through a helically coiled conduit of rectangular cross se< 

tion. A Gauss-Seidel iterative technique was employed to provide the so

lution to nineteen different fluid mechanical situations. Computer solu

tions were in the form of axial velocity profiles, a stream function, and 

cross sectional velocity values. The highest Dean number achieved by 

Rogers was approximately 66. At higher Dean numbers, convergence 

and stability difficulties were encountered.

Barua (3) considered the case of an incompressible, Newtonian 

fluid in laminar flow through a curved tube at high Dean numbers. He 

assumed that the flow in the cross section of a curved system consisted 

of a non-turbulent core moving slowly outwards, surrounded by an in

ward moving boundary layer. ‘ Barua further assumed that when the Dean 

number is large, viscous forces are important only in the thin boundary
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layer near the wall, and that no cross flow exists outside the boundary 

layer. Barua applied a Pohlhausen type solution to the Navier-Stokes 

and continuity equations, obtaining a solution which described analyti

cally the velocity components u'1', v‘, and w‘ both inside and outside 

the boundary layer. Barua's results show good agreement with the ex

perimental findings of Squire (18), Hawes (10), and White (24) and also 

with the axial velocity profiles, experimentally determined at Dean num

bers above 200, presented by Adler (1).

In summary, Dean's (7) analytical work is restricted to Dean num

bers below 50, and the solutions provided by Adler (1) and Truesdell (22) 

are of questionable accuracy for Dean numbers in excess of 200. Thus, 

of all the theoretical and numerical work done on flow in curved tubes, 

Barua's (3) solution is the most universally applicable in terms of both 

the range and the magnitude of Dean numbers that can be considered, 

being quite accurate for Dean numbers substantially greater than 200.

Weissman and Mockros (23) provide a numerical solution to the mass 

transfer problem describing the transport of oxygen into and carbon di

oxide out of blood flowing in coiled circular tubes at Dean numbers below 

50. Some of the solutions provided by Weissman and Mockros also apply 

to heat transfer problems, since heat transfer requires only the substitu

tion of the Prandtl number for the Schmidt number Ngc= [Xip D, where 

D is the diffusivity,
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No strictly theoretical or numerical work has been done in the area 

of laminar flow heat transfer in curved systems at high Dean numbers.



CHAPTER III

MATHEMATICAL DESCRIPTION OF THE PROBLEM

A physical description of the problem with which this work deals' 

is given in detail in the following discussion. A. mathematical model 

in terms of a system of partial differential equations is proposed and 

a numerical calculation scheme for the solution of the system based 

on a combination of Barua's (3) work and finite difference approxima

tions is outlined.

Description of the Problem

Consider the steady laminar flow of a constant property, Newton

ian fluid in a curved tube of radius a'", coiled in a circle of radius R^ 

under the following conditions: (1) the temperature at the tube wall is 

maintained at a constant value; (2) the fluid enters the tube with a uni

form temperature and a fully developed velocity profile; (3) the direc

tion of flow is "helically horizontal"; (4) the flow is axially symmetric 

with respect to a horizontal plane passing through the center of the tube 

and dividing the cross section into two equal halves; and (5) heat gen

eration due to viscous dissipation is negligible.

The above description is represented schematically in figure 2. A 

compilation of terms and symbols used in this work is presented in the 

Nomenclature.
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Mathematical Model

The general equations of continuity, motion, and energy in the rec

tangular, cylindrical, and spherical coordinate systems for laminar flow 

are given by Bird (5). In order to apply these equations to the problem 

under consideration, the equations of continuity, motion, and energy in 

the cylindrical coordinate system were transformed to the helical coor

dinate system presented by Dean (6), shown in figure 3. A detailed ac

count of this transformation procedure is given in Appendix A. Thus, 

the equations applying to the present case are

(Continuity)

-x * * * • VJ i a * * 11/

* dv^ + v" dv^ + - w^cos^ _ _ 1 d [P]
dr* r'1' d^ r-" R^+ r^sin^ r* d^ [^]

* r* n
. >/ 3___ + sin^ * dv* 4. v2 . du*

d r* B* + r*sin\^ dr1' r-" r" d^

pu + u + u siny + 1 Qv + v cosy______ 
dr^ r*  RT + r^sin^_____ r" d^ R'1'4" r'"'sin^ = 0 (1)

(Motion)

w^ sin\j 
+ r sin

(2)
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dw" + v_____ dw^ u' w' sin\^_____  + v ‘ w ‘ cos
dr' d\^ R‘ r'sin^ R'4 r‘sin^

+ w^sin^_____ + 1 d 11 dw^ w"cos\^
R^r^sin^ r* ^\^ I r* ^ R*4 r*sin^)

(Energy, neglecting viscous 
dissipation terms)

u* dT" w"dj2 + d Tv - V d
dr* R*+ r*sin^ ^9 r* ^ NPr [ dr*2

+ 1 dT* + 1 d2T* + sin^dT*

r* d r* r*2 d ^ 2 R*+ r* ^ r*

4. cos\^ dT* +______1_________ d2T"
r*(R*+ r*sin^ ) W (R*+ r*sin^ )2 ^ 6

A boundary layer order of magnitude analysis, detailed in Appendix A, 

was used to simplify equations (1), (2), (3), (4), and (5). These simpli

fied equations are listed below in terms of dimensionless variables.

du 2 dv + v cos\!/
dr ' r d\^ R + r sin^

-y2 _ w2sin^__  _ • d?
r R + r sin^/ ~ dr

0 (Continuity)

(Motion)

(6)

(7)
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dv +v dv w^cos^ _ _ J. d r
u d r r R 4 r sinl^ r d^

V 1 d2v

NRe dr2 (8)

u + v dw + V wcos^ 
R + r sin^ R 4 r

^ —1— 
NRe

1 
sinV^V

d2w 

dr2 (9)

+ w
R + r sin' r

1
NPe

(Energy)

s2t
x~2

+ sin^
R + r sin^

cosV1/ 
r(R + r sin^ )

(10)

Equations (6), (7), (8), (9), and (10) serve as a basis for the calcu

lations found in the following pages. For the problem of interest, the 

associated boundary conditions in terms of dimensionless variables are

I. 0=0.................................T= 0(05 r5 1/2, *77/2—\^ — 7T/2)

II. 0-0..................... fl -Q-C- k = 1 (OS r — 1/2, -70/2^
-77/2)

Fully developed axial velocity profile, 
w~ w(r,^ )
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in. r= 1/2.............................. u — v-w = 0 ( 0 20, -7T/25 ^- 7T/2)

T— 1 ( 0 ^0, -7/72^5 7T /2)

The dimensionless variables are defined as:

NPe - NRe NPr

The star indicates a dimensional quantity, the subscript 0 indicates

entrance conditions, the subscript w indicates wall conditions, and wM

represents the mean fluid velocity.

Outline of Numerical Solution

Barua (3) provides an approximate solution to equations (6), (7), 

(8), and (9) which yields analytical expressions for the velocity com- 

ponents u , v , and w . Barua found that the axial velocity profile was
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greatly distorted from the classical parabolic form commonly encoun

tered in straight pipe laminar flow. His analysis also showed that the w* 

component of velocity was generally 10 to 100 times greater than the u* 

or v-*' component. A discussion of Barua's work is given in Appendix B.

Using dimensionless forms of the velocity profiles given by Barua 

(3), the equation of energy was solved numerically by replacing partial 

derivatives with corresponding finite difference approximations. The 

accuracy of the axial velocity profiles generated using Barua's (3) work 

was tested using equation (81), as presented in Appendix C.

Although a number of attempts were made to solve equation (10) 

numerically, while including the radial and angular velocity components, 

u and v, all attempts proved to be numerically unstable. This is unfor

tunate, but local Nusselt numbers calculated at the inner and outer tube 

walls in the plane of symmetry would remain unaffected, as at these 

points, uzv'O. Also, as previously mentioned, the axial component 

of velocity is substantially greater than either the radial or angular com

ponent. Thus, the deletion of the u and v velocity components from equa

tion (10) should not result in a significant error.

In order to devise a numerical method by which equation (10) may 

be solved numerically, consider a semi-infinite series of cross sectional 

grids superimposed on half of the flow field, as shown in figure 4. The 

grid is used to locate point functions defined in terms of functional
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notation as

f , = f [(m-l) Ar, 7T/2 - U -1)A^ , (z-DAgl
m, K ,z L VJ

The variables in equation (10) are considered point functions on this 

grid and the derivatives are replaced by finite difference approxima

tions. These approximations lead to systems of linear algebraic equa

tions. The resulting algebraic equations are summarized below in 

matrix-vector notation.

In matrix-vector notation, the finite difference equations of energy 

at ^ — 7T/2 can be written as

A1 T1 = bl (11)

This equation applies at step z 4-1 and all components of Aq and b^ are 

either constants or are values determined at steps up to and including 

z +1. The matrix Aq is tridiagonal in form. Thus, equation (11) must 

be solved for F^, which represents point values of the temperature, for 

05 r5 1/2 - Ar and ^ 22 TCl^-

With q known, the finite difference equations of energy at 

^ 22 7T/2 -A^ , i. e. , at angular grid step / — 2, can be written in 

matrix-vector notation as

A2 "^2 ~ b2 (12)
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Again, this equation applies at step z -+ 1 and all components of A2 and 

b2 are either constants or values previously calculated, such as Tp The 

matrix A2 is also tridiagonal in form. Equation (12) is solved for~t"2, 

giving point values of the temperature for 0+ Ar^r5 1/2 - Ar, 

^ = ITU -A^.

In like manner, the angular marching progression is continued 

around the semi-circular cross section. In matrix-vector notation, the 

remaining equations may be represented by

A ^ 7, = b^ , for 7=3» 4,.......................... 2 J + 1 (13)

As in equations (11) and (12), the above equation applies at axial step 

z + 1 and all components of A^ and^ are constants or values previ

ously calculated. As before, matrix Aj, is tridiagonal in form and 

when equation (13) is solved for 7^ , point values of the temperature are 

obtained for ArSrS 1/2 -Ar and \^ — 77/2 - ( f -1)A^ .

After all point values of the temperature have been calculated at 

axial step z + 1, $ is increased by A^ and the above described calcu

lation scheme is repeated at axial step z + 2;

This numerical procedure calls for the use of a simple, but highly 

accurate computational scheme, which provides the solution vector for 

a matrix-vector equation, the coefficient matrix of which is tridiagonal 

in form. This scheme is applicable to tridiagonal matrices of a high
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order and is very efficient with respect to computer time.

With the temperature field known for a given cross section, arith

metic mean and local Nusselt numbers can be calculated as a function 

of the Graetz number.

A more detailed description of the elements of the matrices and 

vectors in the above equations and an expanded description of the numeri

cal calculation scheme are given in Appendix C.

The computer program used to implement the numerical procedure

is included in Appendix D.



CHAPTER IV

NUMERICAL RESULTS

The overall goal of this work was to develop a calculation proce

dure for equation (10) for the case of constant property laminar flow 

heat transfer in a curved tube with constant wall temperature. Only 

the axial velocity component was included in this analysis. The results 

obtained using the numerical scheme developed are given in this chap

ter. The axial velocity profile was generated using Barua's (3) method, 

details of which are found in Appendix B. The general calculation 

scheme has been previously summarized in Chapter III, and details are 

given in Appendix C.

Cases Considered

Parameters varied included Npe, Npp, and a /R'1', dimensionless 

groups arising from and found in the non-dimensional equations of con

tinuity, motion, and energy. A total of ten different fluid mechanical 

and heat transfer situations were investigated. Each numerical solu

tion required approximately one hour of computer time. A summary 

of the cases considered for analysis is given in table 1.

Comparison with Straight Pipe Graetz Solution

The Classical Graetz problem for constant property laminar flow 

heat transfer in a straight tube with constant wall temperature has been



TABLE I. SUMMARY OF CASES AND PARAMETERS STUDIED

Run 
No.

NRe Npr NPe NDe a*/R* w

Calculated % deviation

1 6000 1 6000 1154 1/27 0.9916 0. 84

2 6000 20 120,000 1154 1/27 0. 9916 0. 84

3 6000 50 300,000 1154 1/27 0.9916 0. 84

4 2000 50 100,000 385 1/27 1. 0010 0. 10

5 6000 50 300,000 1455 1/17 0.9891 1. 09

6 2000 50 100,000 485 1/17 0.9968 0. 32

7 6000 50 300,000 1446 1/17.21 0. 9891 1.09 .

8 6000 50 300,000 1633 1/13.5 0. 9876 1. 24

9 6000 50 300,000 2433 1/6. 08 0.9829 1. 71

10 6000 50 300,000 190 1/1000 0.9999 0.01

Deviation from value predicted by Equation (81)
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solved analytically (11). To test the convergence of the numerical 

scheme to the limiting case of straight pipe flow, a curvature ratio of 

1/1000 and a parabolic velocity profile was incorporated into the numeri- 

cal model. (For straight tubes, a /R —• l/OO). Calculated values, 

shown in figure 5, were consistantly within 1 to 2% of the analytically 

derived values given by N^^ — 1. 75 (^Gz^^' ^or ^Gz ^ 10 (12).

Comparison with Experiment

As previously mentioned in Chapter II, Kubair and Kuloor (12) as 

well as Berg and Bonilla (4) have recorded experimental laminar flow 

heat transfer data for a variety of curved systems with constant wall 

temperature, while Seban and McLaughlin (16) took data under constant 

heat flux conditions. All of the above experimentalists achieved varia

tion of the Graetz number by changing the mass flow rate and thus, the 

Reynolds number. Consequently, data taken at a specified curvature 

ratio and Prandtl number are recorded at a variety of Dean numbers.

Kubair and Kuloor (12) determined the laminar or turbulent state of 

flow by employing the friction factor vs. NRe method, using data taken 

isothermally. This would appear to be a poor criteria for the judgement 

of whether the flow is laminar during heat transfer, as heat transfer 

data is taken with an initial temperature difference between the tube wall 

and entering fluid of approximately 75°C. Due to the large temperature 

difference employed, the effects of secondary motion could well be
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enhanced to cause turbulence at lower N„ than would be expected, tie

Kubair and Kuloor's (12) data is generally higher than that of Berg and 

Bonilla (4), who actually record some values of N^ua m that are lower 

than corresponding straight pipe values.

Although the boundary conditions employed differ from those of this 

work, the data gathered by Seban and McLaughlin (16) are presented for 

comparison with local Nusselt numbers generated using the numerical 

scheme developed in this work. Judging by analogous straight pipe situ

ations (11), it would follow that the local values recorded under constant 

heat flux conditions are higher than corresponding constant wall tempera

ture values.

Comparison between calculated and experimental values having com

parable curvature ratios is given in figures 6 and 7. In general, the ex

perimental data is scattered and no final conclusion can be drawn as to 

numerical and experimental agreement. It is felt, however, that the 

effect of fluid property variation with temperature, which would be en

hanced by the secondary motion of the fluid, could definitely increase 

heat transfer coefficients. The effect of variable properties on heat tram 

fer in straight tubes has been amply demonstrated by Wilkins (25).

Numerical Solutions

All cases considered showed curved pipe heat transfer character

istics to be greater than corresponding straight pipe values. Figures
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8 and 9 show that as the Dean number increases, so also does the arith

metic mean Nusselt number. Depending on the N^, increases in

NNu•L>ua. m.
from 20 to 60 per cent were realized over straight pipe values.

Figure 10 reveals a small, but insignificant Prandtl number effect.

A more noticeable Prandtl effect might be realized if the ^-component

of velocity had been included in the analysis.

Figures 11 and 12 show that the local Nusselt number is 60 to 90 

per cent greater at the outer as opposed to the inner wall of the tube. 

This is to be expected, as the region of maximum axial velocity is shifted 

near the outer wall. Also, the "Dean number effect" is again observed.

As expected, the temperature profile and thus the mean temperature 

was found to develop more rapidly at lower Npr. This phenomena is 

shown graphically in figures 13 and 14.

The angular development of a typical temperature profile is shown 

in figures 15 and 16. Due to the distortion of the axial velocity profile 

caused by secondary flow, the temperature profile develops faster near 

the inner wall. The development of a .temperature profile in the plane 

of symmetry is shown in figure 17. The development of characteristic 

temperature profiles as a function of Nqz is shown in figure 18.

Calculation Conditions

The original goal of this work was to solve equation (10) numerically, 

while including all three velocity components. Numerous attempts were
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Figure 13. Mean Temperature Development as a Function
of Distance Down the Pipe
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Figure 17.

H .

Radial Temperature Profiles in the Plane of Symmetry
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made to achieve this goal, but all numerical schemes including the u and 

v velocity components proved to be numerically unstable after only a few 

axial steps.

For the case under consideration, the optimum number of radial 

grid steps was found to be 50, while only 10 angular steps were deter

mined to be necessary. This, of course, called for the solution of a 

system of roughly 500 equations at each axial step.

As previously emphasized, the temperature profile was found to 

develop more quickly for lower Npr, as shown in figure 13. Thus, the 

selection of an optimum axial step size is intimately coupled with this 

behavior. For cases involving Np^ of 1 and 20, a AZ of 0. 5 pipe dia

meters was used for the first 100 axial steps. A step size of 1. 5 pipe 

diameters was employed for the next 100 steps, after *which a AZ of 

5 pipe diameters was utilized. For the more slowly developing tem

perature profile created at Npr~ 50, axial step sizes used for the first, 

second, and third 100 step intervals were 1, 3, and 10 pipe diameters 

respectively.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on this work, the following conclusions are reached:

(1) Significant increases in laminar flow heat transfer character

istics at high Dean numbers for curved systems are realized 

over corresponding straight pipe values, even when only thb 

axial velocity component is included in the analysis.

(2) Comparison between calculated and experimental values shows 

that the angular and radial velocity components may add to cur

ved tube heat transfer characteristics.

(3) A. definite "Dean Effect" exists, i. e. , as the N^ is increased, 

so also are the corresponding heat transfer coefficients.

(4) Local Nusselt numbers (and thus local heat transfer coefficients) 

are significantly greater at the outer, rather than at the inner 

wall of a curved system.

(5) Temperature profiles develop more rapidly and thus tempera

tures are greater at the inner wall of a curved tube.

(6) Barua's (3) method, apparently never before tested in a numeri

cal manner, predicts accurate values for axial velocity profiles 

at high Dean numbers in curved systems.

(7) The solutions presented in this study are also applicable to cases
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involving low mass transfer rates at high Dean numbers. For 

mass transfer, one need only substitute the Schmidt number, 

NSc= Wpf. where D is the diffusivity, for the Prandtl number.

Recommendations

Recommendations for additional studies are suggested by this work.

They are:

(1) The development of another numerical scheme, which would in

clude radial and angular velocity terms, more fully describing 

curved system flow.

(2) The extension of this work to the case of variable property 

solutions.

(3) The more precise and well planned measurement of additional 

curved tube heat transfer data over a wide range of parameters.



NOMENCLATURE

This table contains symbols used frequently throughout this work. 

Common mathematical symbols or symbols defined and used locally 

are not included. Dimensional variables are starred to distinguish 

them from non-dimensional quantities. Vector quantities are denoted 

by an arrow.

SYMBOL DEFINITION

Aj matrix defined by equation (93)

Aj
* 

a

matrix defined by equation (107) 

radius of pipe, ft.

$1 vector defined by equation (100)

vector defined by equation (112)

CP dimensionless heat capacity, (Cp^/Cp^)

D* pipe diameter, ft.

g dimensionless transverse velocity (used 
in Barua's (3) analysis)

Sl acceleration of gravity in axial direction, 
ft/sec^

*
H dimensionless enthalpy, H

Cpo'^w*- Tov)

*
H enthalpy, cp^ (T* - Tq*), BTU/lbm

h" local heat transfer coefficient, BTU/ 
ft2-hr-°F



48

SYMBOL DEFINITION

n a. m. arithmetic mean heat transfer coefficient, 
BTU/ft2-hr-°F-

^T integral defined by equation (119)

w . integral defined by equation (81)

k dimensionless thermal conductivity, 
(k*/k0*)

L* axial length, (Rn^ ), ft.

NDe Dean number, N_, (a^ZR'1') Re

NGz Graetz number, (7T/4)Npe (D^/L^)

NNu local Nusselt number, h'‘~D'1' 
k*

NNua# m arithmetic mean Nusselt number, 
h* D*a. m.

k^a. m.

NPe Peclet number, (NpeNpr)

NPr Prandtl number, c^' p'' 
k*

NRe Reynolds number, w^ Q D

P dimensionless pressure, (P''Ip' w^'^)

Q* heat flow, BTU/hr

r dimensional cross sectional radial coordi
nate, ft. (See figure 3.)

Ar radial grid spacing
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SYMBOL DEFINITION

r dimensionless cross sectional radial co
ordinate (r*/D'‘')

R* radius of curvature of the curved system, 
ft.

R dimensionless radius of curvature, (R^/D^)

T* local temperature, °F

T dimensionless temperature, T^-Tq1, 
rp v m * 
1w --lo

tm dimensionless mean temperature, defined 
by equation (119)

•1 vector defined by equation (99)

T, vector defined by equation (111)

u ‘ radial velocity component, ft/sec

u dimensionless radial velocity component, 
(iT/wm*)

v* net velocity vector, ft/sec

^- component of velocity, ft/sec

V dimensionless ^-velocity component, 
(v*/wM*)

vo dimensionless ^/-velocity component at 
boundary layer edge (used in Barua's (3) 
analysis)

wf* mass flow rate, lb /sec m

w* axial velocity component, ft/sec
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SYMBOL DEFINITION

w dimensionless axial velocity component, 
(w'7wm'p)

wm" mean or bulk velocity, ft/sec

WM dimensionless mean velocity, defined by 
equation (81)

Z dimensionless axial length, (L /D )

△ z axial grid spacing, (RA^)

GREEK SYMBOLS

SYMBOL DEFINITION

<5 dimensionless boundary layer thickness, 
(6*/D*)

61 dimensionless boundary layer variable 
(used in Barua's (3) analysis)

6m dimensionless mean boundary layer thick
ness, Qm r

D*

9 coordinate denoting the section of the cur
ved system under consideration, radians 
or degrees (see figure 3)

M”

V*

viscosity, lbrn/ft-sec

kinematic viscosity, ^jlPip^, ft^/sec

P dimensionless density (p" /Pq")

V angular cross-sectional coordinate, radians 
or degrees (see figure 3)
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SYMBOL DEFINITION

A^ angular grid spacing

SUBSCRIPTS

SYMBOL DEFINITION

a. m. arithmetic mean, i. e. , evaluated at

2

M average or mean value

m radial grid coordinate

X angular grid coordinate

z axial grid coordinate

0 entrance conditions or evaluated at Tq
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APPENDIX A

THE NAVIER-STOKES, CONTINUITY, AND ENERGY 
EQUATIONS FOR CURVED PIPE FLOW

The Navier-Stokes and continuity equations were transformed from

the cylindrical coordinates system (r1, ^', z1) to the helical coordinate 

system (r'1', ^ , 0 ), shown in figure 3.

The vector diagram shown in figure 19 was used to determine the

relationship existing between the velocity components Vpi^, v '"', and

vzi^ in the cylindrical coordinate system and the velocity components

u\ v‘, and w-*' in the helical coordinate system.

Figure 19. Vector Diagram

Examination of figures 19 and 3 reveals that,

r1 = R 4- r siny r*~ (r|2 - 2r'R* + R*2 +' z,2)1/2

6 = 6'

^ = tan ^ (14)
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and,

v. ❖ u

v w

z u cos^ - v'1' sin (15)

Performing the transformation, one obtains,

u'" —-^H + * du"' v"*2 *2 . \H w sinx
R" + sin

P

1 d
R + r' sin^

1 du*"
(16)

u
*

+ JL*
x * dv

*2
1 d P^

*

d sin^ 1 Ou

d r
(17)

R + r sin

* 
u QW

*
dw ‘ u w sin V w cos

1 d

R
* i

+ r sin sin

dw

r ‘ sin^

*
\ *
Or

1
* 

r
(18)

1 1 w° cos'
R','+ r'“sin r cyjv R r sinx

4-
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du'1' 4. u 4 _
R

1 dv'1
r* ^

0 (19)

In dimensionless form, equations (16) through (19) appear as,

u +Z

(1)

du 
d^ 

«5>

v2

(1)

1
r2 d^

(1)

1

.2

o2u

d\22

<6>

wsin 1
R 4 r sinV^/ dr N^e

(1) (?) <52)

+ cos y
R 4 r sin\^/

dv" 4- COS
R 4 r sin

(1)

COS
R + r sin^

JI
r

du

+ y

>21 d
r

(20)

<<5>

u -^

(i)

dv 
dW

(1)

uv

<6>

V 1
^2 
0 u

1

W^cos

(i)

1 du
r2 r drd^ r2 d
(1) (1) (6)

R + r sin^
s^

R + r sinV^/
1

(1) (6)

1

(?)

4 1 
NRe

/ ^2x

>2
O v

dr2

। Din
R + r sin'^

du

dv

(21)
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dw + u w sin\^ vwcos^ _ _ 1 dP
d^ R 4 r sin^/ R + r sin^ R + r sin^/ d$

ci) (i) (6)

d^w + sin\j/
^^2 R+ r sin^/

(1)

dw _ w sin^\j/ + _1 dw 
br (R + rsin^ )2 r dr

(1) Ml

du + u + u sin\^ + JL 
dr r R + r sin^ r

1 d^w + 005^ 
r2 d^2 R+rsin^

wcos^
(R + r sin\^/ )2

(1)

dv + vcos\^ _ 
b^ R + r sin^/ “

ci) (6) (6) (i) (i)

(22)

(23)

In order to simplify the dimensionless equations of motion and con

tinuity, a qualitative "order of magnitude" analysis is performed. A 

similar analysis is given in Schlichting (16). This procedure is at best 

non-rigorous, but is an attempt to simplify the equations as systemati

cally as possible, and is commonly applied in boundary layer type 

analysis.

It is postulated that the order of magnitude of several quantities 

will be at most unity, i. e. , the values of these variables do not differ 

considerably from the reference values. The notation 0 (x) in this
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context means "of the order no greater than x. " Thus, it is assumed

that in the boundary layer.

u _ 0 (5)

v — 0 (1)

w - 0 (1)

where, 0 ((5) = <0 (1)

Thus, for example, <)w n /1| , c^w „ / 1
—x—-0 IF and T—T" - 0 po\6 dr2 ^

It has been shown by Schlichting (16) that (5 ~ V27

Thus, NR z 0 A

Further, it is assumed that in the boundary layer, differentiation

with respect to ^ does not change the order of magnitude, i.e. ,

0 (u).

The order of magnitude of each term is shown in equations (20) 

through (23).

After eliminating terms having small orders of magnitude, the 

equations become,

v2 w2 sin\!/ _ <2>P
r R + r sin^ — r (24)
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dv + v dv w^cosW _ 1 dP 1 d2v , x
dr r (^ R+r sin^/ “ r d^ N^ dr2 ^25^

u _<> +Z 
Or r

dw + vwcos^ _ _ _____ 1 dP + 1
d^ R + r sin\^/ ~ R + r sin^ ^ N^e

d2w 
dr2

(26)

du + 2 dv + vcosVy _
dr r d^ . R + r sin^ ~ (27)

Now, following Barua (3), it is clear from equation (24) that varia

tions of P across the boundary layer may be neglected. Also, assuming 

the pressure gradient in the 0 -direction to be constant, the first term 

on the right hand side of equation (26) is negligible with respect to the 

other terms in the equation. The above assumptions would imply that 

outside the boundary layer, the cross flow is small compared with the 

flow along the pipe. Thus, equation (25) shows that outside the boundary 

layer,

w2cos^ _ 2 dP
R + r sin^ ~ r d^

that

Denoting the velocity along the pipe just outside the boundary layer 

* w *as Wq and introducing the dimensionless variable Wq_ 0 , one finds

w M
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- w02cos'^ _ _ 2 ^P 
R + 1 / 2 sin^ r d^

Thus, equations (25) and (26) become

u dv + 1 dv + w02 cos^________ w2cos\!/ 1 d2v , . 
dr r 5^ RH/2sinky R+rsin\^ NRe dr2 U8)

u dw . V bw , vwcos'J/ _ 1 b2W
dr r d^ R ^ r sin^ ~ NRe ^r2 t2^)

Equations (27), (28), and (29) are the dimensionless analogs of 

equations .(6), (7), and (8) given in Barua's (3) work.

THE EQUATION OF ENERGY

When the equation of energy (4) (neglecting viscous dissipation 

terms) is transformed from the cylindrical to the helical coordinate 

system, one obtains,

u
* w

NT1 Pr

R

2,

f- r * sin^

1 dT* 1 
r*2

+ JL

d2T* + sin\y 
d^2 R^ r'" sin

cos ^____  
r^R** r"" sinV^ )

+ —
(R

1___________ dT-"
r*sin^)2 d^ 2 (30)
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In dimensionless form, the equation becomes.

dT w_____ bT y
br R+rsin^ b^ r

+ A d2T sin^ bT
r2 b^2 R + r sin^ br

. _____Ib2T
(R-F r sin^/ )2 b^ 2

b T _ 1

cos\(/
r(R-b r sin^ )

b2T 1

dr2 r
dT 
dr

(31)

As the fluid moves down the pipe, more heat is transferred by con

vective, rather than conductive means. Thus, it is reasonable to neg

lect the term containing—. Also, since secondary flow exists, 
2

similar reasoning leads to the deletion of the term containing O T .

Thus, the equation of energy is reduced to,

u dT , w_______ dT y bT _ 1
dr R4- r sinV^ d^ r d^ Npe

, sin^ dT cos\^_______ bT
R + r sin^ dr r(R-+ r sin^ ) b^

b2T i 1 bT 
br2 r br

(32)

If one further assumes that:

(1) the fluid properties are constant;

(2) the laminar velocity profiles are established before heating or 

cooling of the fluid;

(3) at L^- 0, the temperature of the tube wall changes from Tq^
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to Tw^ and is uniform at this value for L = 0, 

then, a problem analogous to the straight tube Graetz problem has been 

imposed on curved tube flow.



APPENDIX B

COMMENTS ON S. N. BARUA'S WORK

Summary

Barua (3) considered the steady laminar flow of a Newtonian fluid 

through a curved tube of radius a‘, coiled in a circle of radius R‘ at 

high Dean numbers. Barua assumed: (1) that the flow consisted of a 

non-turbulent core moving slowly outwards, surrounded by an inward 

moving boundary-layer; (2) that at large Np>e, viscous forces are im

portant only in a thin boundary-layer near the wall; (3) that the section 

of pipe under consideration was free from entrance or exit effects, and 

that the velocity profiles were fully developed, being identical at each 

cross section; and (4) that the motion outside of the boundary layer was 

confined to planes parallel to the plane of symmetry.

Method of Solution and Results

Using the Pohlhausen boundary-layer method, Barua obtained an 

approximate solution to equations (6), (7), (8), and (9) in the form of 

expressions describing the velocity components u ', v'1', and w both in

side and outside the boundary layer.

In order to utilize Barua's solution over a large range of parame

ters, the equations given by Barua were put in dimensionless form.

Barua's work shows that the axial velocity profile, w~ w(r, ^ ),

is greatly distorted from the parabolic profile commonly encountered
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in laminar flow in straight tubes. The region of maximum axial velocity 

moves toward the outer wall of the tube, reaching its greatest value at 

the boundary layer edge. Barua also showed that the radial and angular 

velocities are of a negligible nature when compared to the larger axial 

velocities.

Accuracy of Solution

The accuracy of Barua's solution, apparently never before examined 

numerically, was tested in two ways. The axial velocity profiles genera

ted were compared both with the experimental work given by Adler (1) 

and with the restriction imposed by equation (81). Comparison with ex

perimental findings, shown in figures 20,21, and 22, shows good agree

ment. Alsd, the values of ^w for the cases shown in table 1 were con- 

sistantly within 1. 71 per cent of unity.

Solution in Dimensionless Form

As many of the assumptions made by Barua were omitted from the 

text of his paper, it became necessary to re-derive Barua's work from 

a non-dimensional point of view. It should also be noted that a number 

of publication errors were discovered in the text of Barua's paper; hence, 

the reason for any apparent discrepancy between the form of the equations 

presented in this work and those given by Barua. Specifically, errors 

found in Barua's work included:



Figure 20. Axial Velocity Profile in the Plane of Symmetry, N - 273



Figure 21. Axial Velocity Profile in the Plane of Symmetry, = 228 
De



w-^—
WM

Figure 22. Axial Velocity Profile in the Plane of Symmetry, N^— 205
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(1) The equation preceding equation (7) should include a negative 

sign on the left hand side.

(2) Equation (16) should have a negative sign on the right hand side.

(3) The constant preceding the second term on the left hand side of 

equation (20) should be + .4667/4.

(4) In equation (25), a negative sign should precede the h2 cos^ 

coefficient and the numerator of the last term inside the brackets 

on the right hand side should be D sin^.

(5) The sentence following equation (27) should read, "In order to 

determine the unknown constant h, we rewrite (20) as . . . . "

(6) In equation (28) and the equation previous to it, the dg term 

should be followed by an plus sign.

(7) Table 1 is constructed from equations (22) and (25) by neglecting 

the sin\^ terms with respect to terms containing R/a.

(8) The last part of the equation following equation (32) should read

"............... dk^ dr. "
1/2

(9) The equation preceding equation (36) should include an A ' in 

the denominator of both the first and second bracketed terms 

on the left hand side.

(10) An A1/2 should be included in the denominator of the left hand 

side of equation (36).

The dimensionless analogs of the equations given by Barua are



72

presented below. The following equations are numbered in such a way 

that the second number corresponds to the analogous Barua equation.

Denoting the constants in Barua's work as A*, Bv, and C*, one can 

write,

B_ B* c_ C*
~ WM*2 ‘ 4a*2

Thus,

u — ____
P R •’ r sin^ [1

4NRe .

1/3

(outside the boundary layer)

(33-1)

w B
2A

^^Re I ^ fR+rsinVy -+ (outside the
R + r sinky boundary layer)

(34-2)

Equations analogous to Barua's equations (3) - (8) are presented in

Appendix A.

1/2
dv 
dr

1/2
(wo^-w^)cos^ 
R + 1 /2 sin\^/ dr
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2

1
NRe

b2v , _ 1 f dv"
dr2 NRe dr (35-9)

1/2
f vw cos 

dr + J R + 1/2 sin 

1/2"5

(36-10)

(37-11)

1/2f -^Ldr cos

1/2-5

1/2J v2dr +
1/2-6

cos
R + 1/2 sin\|/

1/2
w2) d r

1/2-6

1

Re Jr = 1/2 (38-12)

1/2 1/2

2 I - 
1/2-5

dr + ..2 .cos
w0

cos
1/2

1/2-6

r 1/2
2 dr

L 1/2-6^

1/2-5

bw*
^Jr=l/2 (39-13)
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v = Vq (7^ - 2 7^2 + 7^ 3) — Vgf (7^ ) (inside boundary layer) 

where, ~ _ 1/2-r , v0 - vn (40-14)
5 = v

2
w - wQ (2/^ - 7^ ) - WO0 ^ ^ (inside boundary layer) (41-15)

df^ > + V026 cosY 1 L , "O26 co^

d(VQwo6 ) +2(VQWO)6 cosM/
^^ ' R -M/2 sin^/

R4 1/2 sin^r J R+l/2sin^/
J 0

1J u^<rq
0

wo
„ d(vo6 )

1
vo<5cosV>/
R- 1/2 sin^/ WL.

(43-17)

(44-18)
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2

0 = g (B/A)

C • = D/4

where,

(0. 009524)

1/2

rn i ^^2—Be
2

2a

I 2 
ND . ReJ

2/3

(45-19)

(g2 61) 4 IsMl) ____^^-nr
g 2 RT172sin^

COS}£jJli2/lsh?J£^^
R + 1/2 sih

-0.0333 .. P , (gOl)

[ (R+l/2sinV^/)2 - C' 
[ (R^ 1/2 sin^* )2 + C

01 COS^
2 R+l/2sin^

-I- 0. 01667 , 2 0

h

+

0

(. 05)

-h cos^
(2R 4 sin\^ )

A 
(.08333) (B/A)^

2g = 0. 0333 (g61) -^ <g&)2
2

cos\y

0.4667 
2

(46-20)

(47-21)

(48-22)

(49-23)

R + 1/2 sinU
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(.05)
(R + 1/2 sinV{/ )2 -C * 
(R +1/2 sin^)2 + C .

+ .01667 (50-24)

60g - ~h cos^
- ((2R + sin\^)2+ Di

[4R2 + Di 2 -3 [4R2 +

D - - 4R2 +

dg + g cos^ 
^ (2R + sin\j/)

+0.01667 + •4667 
(4)(. 009524)

(g 61)2(2R + sin \^)

(.05)2R . 0333

4.(12. 2 I 1 [2R + ^.'
[ (g\l/— Q 2R , 2^.

(S51^^ 0 " 26

sinWl.. 3 cos2^ - + .....D_sin^._
^ (2R + sin^ ) ^R+sin'jO^

24R2 = 0

(51-25)

(52-26)

(53-27)

+____I____  ( 05) U2^ sin^)2-P
(0.0333) V 7 [ (2R + sinV^)2+D<

_ 11 _£2£^----- (2R+sinW)
gj (2R 4- sin\^/ )

2 . 1 - n (54-28)
0.0333 0.009524

4R2- D'
4R2 + D

+.01667

(165) =

1

(55-29)

0

(56-30)
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h = 28. 4 (R) 3/4 (57-31)

B NRe
,1/3

2
3 - 45M 1 (58-33)

where, 6m
2a

NDe =

Bl1/2
A

A

B

30
16.93

NRe a*
R'

2/3 
NRe

-1/2 
A.
B

2 
NRe

- 2/3
(2R)1/4 (59-34)

1/2 - N

- NRe

ni/4
2R

1
2R

1.871 +

1/2

1/2 = (1.335) (B) 1/6 (R) 1/4

3. 96 R3/2

NRe2
(1.871) +

(60-35)

(1. 871)2 + ! 03NDe

(1. 871)2 + T 03 Nd£ 1/2

1/2

61-36)

(62-37)

3 
(63-38)

A vector diagram similar to that of figure 19 gives the u and v

velocity components outside the boundary layer.
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u = u sinU/ 
P x

v = Up cos^ (64)

The u component of velocity in the boundary layer is calculated by 

putting the boundary layer equation of continuity in finite difference form 

and integrating numerically. Thus,

UnM “um+lU +
Ar 
rm

A>v 1 . ( Ar) vm o cosY.
XU / -[- ______________ 1A_________A
^mj (R 4 rm sin ^ )

(65)



APPENDIX C

DEVELOPMENT OF CALCULATION SCHEME

Development of Finite Difference Approximations

Consider the function f(r, ^ ,0 ) defined on the semi-infinite volume 

of the (r A^ , 0 ) coordinate system bounded by

05r5 1/2,

-iri2- ^-w,

and 0 5 0 = OO

Let a series of semi-circular grids of mesh spacing (Ar, A^ ) be super 

imposed on this domain a distance of AZ apart, where AZ ~ »&6 ■ 

Define

r = (m-1) Ar, ISmS N + 1 (66)m

^ = 7T/2-U-l)A^, 15^5 2J+1 (67)

9^ (z-l)A0 , Azcoc (68)

Zz = R0Z = (z-l)RA0 (69)

and

fm, ^ ,z = f [(m-DAr, 7f/2-( f - 1)A^/ , (z-l)A^ (70)

By a Taylor's series expansion about some point, a,
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f(r,^,0) = f(a,Y,0) +(r-a)[41 a-^ -9

(r-a)2 " d2f
2!

a,

1-1

(i-1) ! 1-1 + Ri (71)-

where R- — (r-a)
1

and 2
- a

2

Applying this expansion to the finite difference grid

fm + l. Z.z = ,z+ ^r +0(Ar2) (72)
A vr J m, si , z

f 1 o „ - f - Ar i—AAL
m-1, ^ , z m, x , z [ ^)r

m,

+ 0(Ar2)

, z

(73)

Combining the above equations gives

(3f _ ^m -t 1, f , z frn -1, f , z
. ^r . m, ^ , z 2^r + 0(Ar2) (74)
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The functional symbol 0( ) indicates a truncation error which is pro

portional to the value of the argument of the function.

By a similar manipulation of Taylor series expansions, the follow

ing finite difference approximations may be derived with the order of 

their associated truncation error.

m, K ,z
I^L^Z^I^IlL-^^ + 0(Ar2) (75)

2 Ar

m, j( ,z

f flm + 1, , z Lm, x , z
Ar +0 ( Ar) (76)

frn ■ l^z_J^A^AliIlA^? + 0(Ar2) (77) 

Ar2
m, K , z

A simple interchange results in approximations for derivatives with 

respect to and Q .

For example;

and

df

I M , z

an
m, ^ , z

A^

f - fm, f , z 4 1 m, / , z
^6

O(A0 )

(78)

(79)
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Calculation Scheme for Velocity Components

Neglecting the u and v components of velocity and considering the 

finite difference grid shown in figure 4, axial velocities were calcu

lated as point functions using the Barua (3) method outlined in Appendix 

B. At each grid point, a check was made to determine if the point was 

inside or outside the boundary layer. The results of this test deter

mined the expression used to calculate the axial velocity at that point.

Num eric al Integration for Mean Velocity

The average or mean axial velocity, w^ r, is determined by sum

ming all axial velocities over the cross section and dividing by the 

cross-sectional area (4). Thus, one writes

In dimensionless form, this becomes

wm — 1 — 8/7T

Since this expression is identically equal to unity, the integration
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provides an indication as to the accuracy of the axial velocities gener

ated using Barua's (3) technique.

The integration can be accomplished numerically using Simpson's 

rule twice. Since the expression is exact in the mathematical sense, 

one cah write,

8/7T

^j-TT/2

^ T(I2
d^ (82)

Considering the first integration to be that with respect to r, the

numerical approximation is,

wr +4wr + wr

m-1 m

(83)

for m = 2, 4,.................. , N and 15 X — 2 J + 1.

With the values of F-^^ ), F2(^/),..................., Fgj ^ ^ ^ ) known,

the numerical integration for^w is completed by writing,

w— ^ITT

77/2"
(84)

for f = 2, 4,.................. , 2J.
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Finite Difference Representation of the Equation of Energy 
and Calculation Scheme for Temperature Fields

Neglecting the u and v components of velocity, the equation of

energy can be written as

At ^— 7T/2 (in the plane of symmetry), the equation of energy 

reduces to

w dT dT + 1 d2T
R + r ^ - NPe I R J r r] dr Npe $r2 (86)

Adopting the notation that

(m-1) Ar, 7T/2 - ( J^-DA^

m, ^ , z (m-1) A r, 7T/2 - (^ -DA^ , (z-DA^)

and writing equation (86) in finite difference form,one obtains
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wm,l
R + rm

T T*m, l,z +1 xm, 1, z

^m H, %z +1" ^m-l, l,z+l f 1
Pe

1
Npe

1
R + rm

1

^m + 1, 1, z +1 ~ ^^m, 1, z +1 + Rm- 1
Ar2

1, z +1

(87)*

Rearranging, one obtains,

1
Nd Pe

1 
(Ar)2 I'm -1, 1, z + 1

1 |wm,l + 2
^9 \R+rm NPe( Ar)2

Tm, 1, z ^ 1

Np 2Ar R+r r ( Ar)2

1 fwm,l
△0 [Rtrm ^m, 1, z. for 2 5 m- N.

Tm + 1, 1, z 4- 1

(88)

Special attention must be given to equation (86) at r— 0, as

1
NPe

1 ^T 
r c)r

is undefined.

Using L'Hospital's rule,

- 1 d2T

NPe dr2

Thus, at r~0, equation (86) becomes,
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w dT _ 1 dT 2 d2T
R d£ NpR dr N„ n 2v r~ 0 Pe rrO Pe Or (89)

In finite difference notation, equation (89) appears as

(90)

It is obvious that TOj l z + ^T^j + l z 4. p If T2, 2J + j, z + 1 is 

approximated by T2 2J + 1 z the error wip be of the order of △ 0 .

Rearranging equation (90) and incorporating the above approxima

tion, one obtains

Equations (88) and (91) represent the system of linear algebraic 

equations approximating the equation of energy at ^ — 7T/2. In matrix 

vector notation, this system can be represented as

Ai = bx (92)
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The coefficient matrix Ai is a tridiagonal matrix given by,

Bi C1

A2 B2 C2 
\ 

\ 

\ CN_x

AN Bn

+ ___ 4___  
Npe Ar2

1 1 2
Cl~ Nr>o ' 2 Ar (R) " .2

re Ar

and for 2 5m5 N,

c _ 1 r____ 1 1 1 . 11 1

m Np 2 Ar R b r r A 2r^e 1 m m I A r

The solution vector ti is given by

(93)

(94)

(95)

(96)

(97)

(98)
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T 1, 1, z + 1

2, 1, z + 1

(99)

TN, ^ Z + 1

and the constant vector b^ is given as.

bl =
bl

b2
(100)

b 
N

where
NPe

1 1 T2/2J4 1, z
2 Ar R

J (101)

for 2 5m5 N-l,

1
2 Ar

(102)

(103)
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As the values of T at ^— Tll^> ( ^ — 1), have been calculated, 

one can now proceed to calculate values of T at X — X + 1-

(Note: As the center line temperature has been calculated, one

needs only consider values of m for 2Sm — N;fpr 1 = X — 2J + 1.)

In finite difference form, equation (85) becomes,

w
R+i^sin^

T j 1 - Tm, j ,z <1 m, , z

m + 1, Q , z ! 1" ^m -1, X, z +1
4-

1
NPe

sin Y;
R+ rmsin'xi

cos __________ •
^eVR^m8111^)

m, ^ -1, z + 1 ~ ^m.^z

Rearranging, one obtains,

1 1 । sin^f
Npe 2Ar R+rmsin^ Tm-1, 5 , z4" 1

ma cosY;
NPerm(R4 rm

2
NPe Ar2

_siiL^_____4_J_
R+rmsin\^ rm m.4-1, i, z + 1

w
R 4 rmsin m, x , z - ^m, ^-1, z4 1

(105)
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The system of equations described above can be written in vector

matrix notation as

A^ ^ ~ ^ > A = 2, 3,.................., 2J +1 (106)

The coefficient matrix, A^ , is tridiagonal and is given as

(107)

where, for22mSN,

A_____ 1 /___ sin^_____  + _1J __1_
m Npe 2 Ar R + rmsin^ r I

1 W™U
^9 LR+rmsin^

(108)

.1cos^ X 2
^W^R^ NPe Ar2

*
(109)

1 _ 1 / sin^x 4 1 _ 1
Npe 2 Ar |R-rmsin^ rm , £^2

The solution vector t^ is given by

(110)
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lX -

T 2, ^ , z + 1

T
3, X , z " 1

N, J? , z + 1

The constant vector, b^ , is given by

where,

b2 -
1 w2,£

△ ^ R1 r2sin' 2, X , z

(111)

(112)

+ —- cosy?___________
Per2(R r2sin^ ) 2, ^-l,z + 1

- Tl, 1, z + 1
N- Pe

1
2 Ar

sin^/f + 1
R+ r2sin^ r2

1
2 (113)
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m
wmu

R * r sinW.m &f

______ cos^_________
N r (R -r r sinW ) Pe m m M

m, x , z

^m, X -1, z + 1 (114)

for 3 — m— N-l, and

bN" ^0
WN4

R !- rNsin\^ , z

4- 1 1 sin^f + 1 \ + 1
N-r> 2 Ar R+ r sinV/ rM I A 2 Pe N M N / Ar (115)

The marching pattern in the angular direction is continued for

1^ X —2J + 1. When all the temperatures have been calculated at a 

given cross section, a step of length AZ is taken in the axial direction, 

and the entire procedure started anew.

Solution of Systems of Equations

The finite difference approximations for the equation of energy 

result in systems of linear algebraic equations, which when represented 

in matrix-vector notation have a coefficient matrix which is tridiagonal 

in form. For.systems of this variety, a computational algorithm based
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on the Gaussian elimination technique is available (13). This scheme

is highly accurate and quite economical with respect to computer time.

This technique can best be illustrated by considering a system of

equations represented by

Ai Bx X1 ■°1 "

X2

1

°2
1
1
1

1

XN-1

1
1
1

°N-1

XN J _Dn .

(116)

The computational algorithm is

W1 = A1

Wm = Am-Cm%-l(m=2'3-4.......................  N)

G. _ D! (117)

Gm _ ^m G m Gm -1 (m ~ 2, 3, 4, . . . . , N)

m

XN ~ GN

Xm - Gm-Vm+1 (m=N-l,N-2,.........................1)
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Notice that at the most, three multiplications, three divisions, and 

three additions are required per grid point, and the amount of compu

tational time is directly proportional to the number of grid points.

Mean Temperature

The "mixing-cup" or mean temperature (4) is defined as

(118)

In dimensionless form, equation (118) becomes,

(119)

The numerical integration yielding^ -p can be performed in a 

manner similar to that used to determine\QW, i. e. , using Simpson's

rule twice.

Writing^T as,
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(120)

and taking the first integration to be that with respect to r, the numeri

cal formulation is

r — 1/2J T w r d r
r = 0

Ar 
3

Tw r +4Twr
m-1 m

+ T w r (121)

m ^ L

for m= 2, 4, , Nand 15 j5 2J -bl.

With the values of G^ (^ ), G2 ( ^ ), ' G2J + 1(^) known>

the numerical integration for ^2^ is completed by writing

>5 = bitt d^/ = 8/77"

-7T/2J g(Wm'1/
7T/2

+ 4Gf (V) +G <+1^>

(122)

for X-2, 4, , 2J.
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Nusselt Numbers

The local Nusselt number is defined by

* *
N - h D -

Nu i* ~ kM kM* (Tw* - TM*) (123)

Putting this in dimensionless form

N -
Nu -

kw d r r= 1/2 
kM (1-TM) (124)

As the fluid properties are assumed constant, kw=: k^- —1. Thus,

N =
Nu

dT
^r r- 1/2 
d - tm> (125)

A finite difference approximation of this equation is

N
Nu -

3TN +1, ^ , z + 1 " 4TN, , z + 1 4 Tn-1, / , z + 1 
2Ar(l-TM) (126)

The local Nusselt numbers of interest are at the inner and outer

walls of the pipe in the plane of symmetry, i. e. , at f - 1, ^ = 2J + 1.

The first law of thermodynamics written for an element of volume

fixed in space is
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+ §L L^ PV

vol

dA (127)

Neglecting potential and kinetic energy terms in comparison with the

enthalpy term, this equation is reduced to

(128)

Defining the arithmetic mean-heat transfer coefficient, hn'a m , by

Q* = h* (7TD*L*) 
a. m. *v

(Tw* - To*) 4- (Tw* - TM*)

2 (129)

one can combine equations (128) and (129) to obtain

(130)

2

When various dimensionless quantities are substituted into the 

right hand side of equation (130), the expression can be written as,
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r = 1/2

h a. m.
16 k0- NGz

7T2D* (2-Tm) r = 0 V= 7^/2
P H w r d r dVV

(131)

Defining the arithmetic-mean Nusselt number to be

h
NNu1NUa. m.

a. m
k a. m. (132)

substitution of equation (131) into equation (132) yields

r = l/2 \^=-7T/2

Nnu1NUa. m.
16NGz 

^r2
r = 0

k
^ KU

a. m. (2 - Tm) (133)

As the fluid's properties are considered to be constant, Q — 1,

k = 1, and a. m.

C
H “ C "(T

P0 w 0 C
P0

, *
P0

(T* _ Tq*}

<Tw ~ T0 )
T (134)

Therefore,

^Nu1NUa. m.
16NGz r

= 1/2 ^=-7T/2j J T w r d r d\^/

=o 7T/2
<2 - TM) (135)



APPENDIX D

COMPUTER APPLICATION OF CALCULATION SCHEME

Computer and Computer Language

The calculations were made on an IBM 360 digital computer opera

ted by the Engineering Computer Center at the University of Missouri's 

Columbia campus. The programming language utilized was FORTRAN- 

IV, described in reference (17).

Outline of Computer Program

The overall program is composed of a main program and two SUB

ROUTINE sections.

SUBROUTINE VELCOM calculates the velocity components u, v, 

and w as point functions both inside and outside the boundary layer.

SUBROUTINE TRIDAG employs the computational algorithm de

scribed in Appendix C to solve a system of linear algebraic equations, 

the coefficient matrix of which is tridiagonal in form.

The main program calculates the various elements of the matrices 

and vectors describing the finite difference approximations of the equa

tions of energy. The temperature field and resulting arithmetic mean 

and local Nusselt numbers are also calculated as a function of the Graetz 

number.

Input data includes the dimensionless quantities (R^/a^), Npr, Npe,
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and parameters specifying the finite difference grid size, N, J, and A^.

It should be noted that the program was constructed with the hope 

that all three velocity components, u, v, and w, could be used to obtain 

a numerical solution. As stability problems were encountered when the 

radial and angular velocities were non-zero, a DO LOOP is employed 

at the end of SUBROUTINE VELCOM to set u=vr0 everywhere in the cross 

section.

To aid the reader, COMMENT statements are used liberally through

out the program.

Computer Program Nomenclature

AOVR - (a*/R*) ETA - 7^

B ( ) - elements of vector b^ FPSI(L) - F^ (<p

DD ( ) - elements of vector ^

DEAN - NDe

G- g

GPSI(L) - G, ^)

DELPDE - A^ (degrees) 

DELPSI - △ ^ (radians)

GR - NGz

PARDL - L> (5

DELTA - 6

DELTA! - 5/
PARDL 1 - <>6i

DE LT AM - 6 M PARE - 5f

DELTAR - /\ p

DELTHA - ^0 (radians)

DLTHAD - A 0 (degrees)

PARG - b g 
ay
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PARV - d v

PAR VO - dv0

PE - Npe

PR - Npr

PSI(L) - ^ (radians)

PSIDEG(L) - ^ (degrees)

R(M) - rm

RC - R

RE - NRe

ROVA - (R*/a*)

T(M,L,Z) - Tm ^z

THETA - 0 (radians)

THETAD - 0 (degrees)

TINTGL - ^2 T

TM - TM .

V(M,L) - vm ?

V0-v0

W(M,L) " wm^

WO - w0 

WINTGL - ^$ w

XLOVD - Z

XNU - NNu 
a. m.

XNUI - NM
Nu\jy= -77/2

^O^Nu^ 7T/2

Y( ) \

Z( )j

- elements of the matrix

U(M, L) - u

YY( )>

ZZ( \

- elements of the matrix

m,jf
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Computer Program

The program used to implement the numerical solution is listed 

below. (Double spacing denotes a new card.)

DIMENSION U(60, 60), V(60, 60), W(60, 60), R(10 5), PSK105),
PSIDEG(105),

IGPSI(IOO)

DOUBLE PRECISION T(60, 60, 2), RO, PE, RPR, RPS, DELPSI, 
DELTAR, DELTHA,

181(60), El, E2, E3, E4, XX(60), YY(60), ZZ(60), DD(60), Fl, F2,
F3, F4, F5,

2G1, G2, G3,G4, Hl, H2, H3, H4, H5, H6, H7, X(60), Y(60), Z(60), B(60

1 READ(5, 5)N, J, RE, ROVA, PR, DELTHA

5 FORMA T(2I5, 4F10. 0)

PI=3.1415926535

C

C THE ABOVE READS IN THE REYNOLDS NUMBER, THE R OVER A. 
CURVATURE RATIO,

C THE PRANDTL NUMBER AND THE GRID PARAMETERS N AND J. 
THE SPACING

C BETWEEN GRIDS, DELTA THETA, IS ALSO READ IN

C

XN=N

XJ=J

DELT AR =1.0/(2. 0*XN)
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DELPSI"PI/(2. 0*XJ)

DELPDE=DELPSI*180. 0/PI

DLTHAD=DELTHA*180. 0/PI

NP1=NH

JJ=(2*J)+1

DO 10 M=l, NP1

XM-M

10 R(M)=(XM-1. 0)*DELTAR

DO 15 L=1,JJ

XL=L

PSI(L)=(PI/2. 0)-(XL-l. 0)*DELPSI

15 PSIDEG(L)-PSI(L)*(180.0)/PI

C

C THE ABOVE PORTION OF THE PROGRAM CALCULATES THE 
VALUES OF DELTA R,

C DELTA PSI, AND DETERMINES THE VALUES OF R AND PSI AS 
A FUNCTION OF

C GRID LOCATION

C

PE=RE*PR

RC~(1. 0/2.0)*ROVA

DEAN=RE*((L 0/(2. 0*RC))**0. 5)

AOVR=1. 0/ROVA
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C THE ABOVE STATEMENTS DETERMINE THE PECLET NUMBER, 
THE DIMENSIONLESS

C RADIUS OF CURVATURE, THE DEAN NUMBER, AND THE A. OVER 
R CURVATURE

C RATIO

WRITE(6, 20)

20 FORMA T( 1H1,99HTHE RESULTS OBTAINED BY APPLYING 
THE FINITE DIFFEREN

ICE METHOD OF SOLUTION TO THE EQUATION OF ENERGY/ 
1H0, 5 7HDESCRIBING

2HEAT TRANSFER IN A. CURVED TUBE ARE SHOWN BELOW/,

WRITE(6, 25)DELTAR, DELPSI, DELPDE, DELTHA, PE, DEAN, 
RE, PR, ROVA, AOVR,

IN, J

25 FORMATdH , 8HDELTA. R=, F12. 8/1H0, 10HDELTA. PSI= 
F20. 8/1H0, 21HDELTA P

1SI IN DEGREES=, F20. 8/1H0, 12HDELTA THETA =, F20. 8/1H0, 
14HPECLET NUMBE

2R = F20. 8/1H0/12HDEAN NUMBER-, F20. 8/1H0, 16HREYNOLE 
NUMBER^, F20. 8/1

3H0, 15HPRANDTL NUMBER=, F20. 8/1H0, 29HTHE R OVER A 
CURVATURE RATIO=, F

420. 8/1H0, 29HTHE A. OVER R CURVATURE RATIO-, F20. 8/ 
1H0, 2HN=, I5/1H0, 2H

5J=;I5///)
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DO 30 L=1,JJ

DO 30 M=l, NP1

30 T(M,L, l)=0.0

C

C THE STATEMENTS ABOVE SET THE DIMENSIONLESS TEMPERATl 
EQUAL TO

C ZERO EVERYWHERE IN THE CROSS SECTION AT THE BEGINNING 
OF THE HEAT

C TRANSFER SECTION

C

NZ=1

THETA=0. 0

CALL VELCOM(U, V, W, R, PSI, N, J, RE, ROVA, WINTGL)

WRITE(6, 27)WINTGL

27 FORMAT(1H , 31HTHE VALUE OF THE INTEGRAL OF W=, 
F20.8///)

WRITE(6, 35)

35 FORMA.T(1H , 10X, 1HR, 12X, 13HPSI (DEGREES), 14X, 1HU, 
19X, 1HV, 19X, 1HW//)

DO 36 L=l, JJ

DO 36 M=T, NP1

36 WRITE(6, 37)R(M), PSIDEG(L), U(M, L), V(M, L), W(M, L)

' 37 FORMAT(1H , 5F20. 10)

WRITE(6,26)
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26 FORMAT(1H , 10X, 1HR, 12X,15HTHETA (DEGREES), 5X, 
13HPSI (DEGREES), 14X,

11HT///)

39 DO 40 L=l, JJ

40 T(NP1, L, 2)-T. 0

THE ABOVE SETS THE BOUNDARY CONDITION THAT THE 
DIMENSIONLESS

TEMPERATURE IS EQUAL TO A VALUE OF ONE AT THE WALL

E1^W(1, 1)/(RC*DELTHA)

E2~4. 0/(PE*(DELTAR**2))

E3=(1.0/(PE*RC))-U(l, 1)

E4=2. 0/(PE*(DELTAR**2))

YY(1)=E1+E2

ZZ(1)=(-1. 0/(2. 0*DELTAR))*E3-E4

DO 45 M=2, N

RPR-=RC+R(M)

Fl=l. 0/(PE*RPR)

F2=1.0/(PE*R(M))

F3=L 0/(PE*(DELTAR**2 ))

F4=W(M, D/RPR

F5=2. 0/(PE*(DELTAR**2))
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XX(M)=(1. 0/(2. 0*DELTAR))*(FHF2-U(M, 1))-F3

YY(MH1. 0/DELTHA)*F4+F5

45 ZZ(M)=(-L 0/(2. O*DELTAR))*(F1+F2-U(M, 1))-F3

Gl^Wd, 1)/(RC*DELTHA)

G2=2. 0/(PE*(DELTAR**2))

G3-(l. 0/(PE*RC))-U(l, 1)

DD(1)=G1*T(1, 1, 1)+T(2, JJ, 1)*(G2-(1. 0/(2. 0*DELTAR))*G3)

DO 50 M=2, N

RPR=RC+R(M)

G4=W(M, D/RPR

50 DD(M)=(1. 0/DELTHA)*G4*T(M, 1, 1)

DD(N)=DD(N)-ZZ(N)

CALL TRIDAG(N, YY, ZZ, XX, DD, SI)

DO 55 M=l, N

55 T(M, 1,2)=S1(M)

DO 56 L=2, JJ

56 T(1, L, 2)=T(1, 1,2)

XZ=NZ

THETAD^XZ*DLTHAD

DO 60 M-^l, NP1

60 WRITE(6, 65)R(M), THETAD, PSIDEG(l), T(M, 1, 2)

65 FORMATdH , 3F20. 10, F20. 14)
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L-2

66 DO 70 M=2, N

S~SIN(PSI(L))

C1=COS(PSI(D)

RPS=RC1R(M)*S

H1=S/(PE*RPS)

H2=1.0/(PE*R(M))

H3=l. 0/(PE*(DELTAR**2))

H4rW(MJL)/RPS

H 5 =C 1 / (PE*R( M) *RPS)

H6=V(M,L)/R(M)

H7=2. 0/(PE*(DELTAR**2))

X(M-1)=(1. 0/(2. 0*DELTAR))*(Hl+H2-U(M, L))-H3

Y(M-1)=(1. 0/DELTHA)*H4^(l. 0/DELPSI)*(H5-H6)+H7

Z(M-1H-1. 0/(2. 0*DELTAR))*(Hl+H2-U(M,L))-H3

70 B(M-l)=(1. 0/DELTHA)*H4*T(M, L, 1)+(1. 0/DELPSI)*(H5-H6)
*T(M, L-1,2)

B(1)=B(1)-T(1, 1,2)*X(1)

B(N-1)=B(N-1)-Z(N-1)

NM1=N-1

CALL TRIDAG(NM1, Y, Z, X, B, SI)

DO 75 M=l, NM1

75 T(M+1, L, 2)=S1(M)
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DO 80 M=l, NP1

80 WRITE(6, 85)R(M), THETAD, PSIDBG(L), T(M, L, 2)

85 FORMATdH , 3F20. 10, F20. 14)

L=L+1

IF(L-JJ)66, 66, 90

90 THETA. =THETA+DELTHA

XLOVD=RC*THETA

GR-PI*PE/(4. 0*RC*THETA)

J2"2*J

DO 92 L=l, JJ

SUM6=0. 0

DO 91 M=2, N, 2

91 SUM6=SUM6+T(M-1, L, 2)*W(M-1, L)*R(M-l)+4. 0*T(M, L, 2)
*W(M, L)*R(M)+

1T(M+1, L, 2)*W(M+1, L)*R(M4 1)

92 GPSI(L)=DELTAR*SUM6/3.0

SUM66=0. 0

DO 93 L=2, J2, 2

93 SUM66=SUM66+GPSI(L-l)+4. 0*GPSI(L)+GPSI(L-?-l)

TINTGIX8. 0/PI)*DELPSI*SUM66/3. 0

TM=TINTGL / WINTGL

XNU=((16. 0/(PI**2))*GR*DELPSI*(SUM66/3. 0))/(2. 0-TM)
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XNUO{3. 0*T(N+l, 1, 2)-4. 0*T(N, 1, 2)+T(N-l, 1, 2))/(2. 0*DELTA 
*(1. 0-TM)

1)

XNUI=(3. 0*T(N+l, JJ, 2)-4. 0*T(N, JJ, 2) +T(N-1, JJ, 2))/(2. 0* 
DELTAR*(1. 0-

1TM))

WRITE(6, 94)GR, XNU, XNUO, XNUI, XLOVD, TINTGL, TM

94 FORMAT(1H , 14HGRAETZ NUMBER^ F20. 8/1H0, 31HARITH 
ME TIC MEAN NUSSELT

INUMBER*, F20. 8/1HO,35HLOCAL NUSSELT NUMBER AT OUT: 
WALL=, F20.8/1H0

2 , 35HLOCAL NUSSELT NUMBER AT INNER WALL= F20. 8/ 
1H0, 29HDISTANCE DOWN

3 THE PIPE (L/D)=, F20. 8/lH0,14HINTEGRAL OF T=, F20. 8/ 
1H0, 17HMEAN TEM

4PERATURE=, F20. 8///)

NZ=NZ+1

IF(NZ-100)210, 201, 202

201 DELTHA=3. 0*DELTHA

202 IF(NZ-200)210, 203, 210

203 DELTHA=(10. 0/3. 0)*DELTHA

210 IF(NZ-300)9 5, 9 5, 200

95 D0 100L=1,JJ

DO 100 M=l, NP1

100 T(M,L, 1)=T(M, L, 2)
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GO TO 39

200 GO TO 1

STOP

END
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SUBROUTINE VELCOM(U, V, W, R, PSI, N, J, RE, ROVA, WINTGL

C

C THE PURPOSE OF THIS SUBROUTINE IS TO CALCULATE THE 
VELOCITY COMPONENTS

C U, V, AND W THROUGH USE OF THE DIMENSIONLESS BARUA MET!

C

DIMENSION U(60, 60), V(60, 60), W(60, 60), R(105), PSI(105),
PSIDEG(105),

IFPSI(IOO)

PI=3. 1415926535

NP1=N+1

JJ=(2*J) + 1

RC=(1. 0/2.0)*ROVA

DEAN=RE*((1. 0/(2. 0*RC))**0. 5)

AOVR-1.0/ROVA

C

C THE ABOVE STATEMENTS CALCULATE THE DIMENSIONLESS 
RADIUS OF CURVATURE

C , THE DEAN NUMBER, AND THE RECIPROCAL CURVATURE RATI

C

Bl=((( 1.871**2)+1. 03*DEAN)**0. 5)

B2=(l. 871+B1)**3

B3=3. 96*(RC**1. 5)/(RE**2)

B=B3*B2
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A=(l. 335**2)*(B**0. 333)*(RC**0. 5)

D=-4. 0*(RC**2)+2. 0*SQRT(6. O)*RC

C=D/4. 0

H=28. 4*(RC**0. 75)

XN=N

XJ=J

DELTAR-1. 0/(2. 0*XN)

DELPSF=PI/(2. 0*XJ)

DELPDE=DELPSI*180. 0/PI

C

C THE ABOVE PORTION OF THE PROGRAM CALCULATES VALUES 
FOR THE BOUNDARY

C LAYER CONSTANTS B,A,D,C,AND H. ALSO, THE VALUES OF 
DELTA R, DELTA PSI,

C AND DELTA PSI EXPRESSED IN DEGREES ARE FOUND

C

L=1

M=NP1

45 RPS=2.0*RC+SIN(PSI(L))

S=SIN(PSI(L))

C1=COS(PSI(D)

Zl=-(1. 0/60. 0)*(H**2)

Z2=C1/((RPS**2)+D)
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Z3=3. 0*( 01**2)/RPS

Z4=D*S/(RPS**2)

G=Z1*Z2*(S+Z3+Z4)

DELT A1=-(H/G)*C1/RPS

• DE LTA=( DELTA 1/2. O)*((A/B)**O. 5)*((2. O/RE)**O. 667)

DELTAN=(30. 0/16. 93)*((A/B)**0. 5)*((2. 0/RE)**0. 667)*
((2.0*RC)**0. 25

1)

BOUNDE-0. 5-DELTAM

IF(R(M)-BOUNDE)60, 50, 50

50 VO=G*(B/A)*((RE/2. 0)**0. 333)

WO=(B/(2. 0*A))*((4. 0*RE)**0. 333)*(RC+(0. 5-DELTAM)*S 
+(C/(RC*(0. 5-

1DELTAM)*S)))

ETA=(0.5-R(M)) /DELTAM

F=(ETA-2. 0*(ETA**2)+(ETA**3))

PARF-(1. 0-4. 0*ETA+3. 0*(ETA**2))

X1=-S/((RPS**2)+D)

X2=3.0*(Cl**2)/RPS

X3=D*S/(RPS**2)

X4=- (C1 **2) *2. 0 *RPS/ «(RP S**2) J-D)**2)

X5=C1/((RPS**2)+D)

X6=6. O*C1*S/RPS
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X7=3. O*(C1**3)/(RPS**2)

X8=D*C1/(RPS**2)

X9=2. O*D*S*C1/(RPS**3)

PARG=-((H**2)/60.0)*(Xl*(S>X2+X3)-fX4*(S+X2+X3)+X5*(Cl
-X6-X7-X8-X9)

1)

PARVCF(B /A)*((RE /2. 0)**0.333)*PARG

Y1-H*S/(G*RPS)

Y2 ~H*( C1**2) /(G*(RPS**2))

Y3=H*C1/((G**2)*RPS)

PARDL1 =Y 1+Y2 +Y3*PARG

PARDL=0. 5*((A/B)**0. 5)*((2. 0/RE)**0. 667)*PARDL1

PARV=F*PARVO-(VO*ETA/DELTA)*PARF*PARDL

C

C THE ABOVE PORTION OF THE PROGRAM CALCULATES VALUES 
NEEDED TO DETERMINE

C VELOCITY COMPONENTS IN THE BOUNDARY LAYER

C

V(M, L)=VO*(ETA-2. 0*(ETA**2HETA**3))

W(M,L)=WO*(2. 0*ETA-(ETA**2))

IF(M-NP1)55, 65, 65

55 U(M, L)=U(M+1, L)^(DELTAR/R(M))*PARV+(DELTAR*V(M, L)
*C1)/(RC+R(M)*S)

GO TO 70
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C

C THE ABOVE STATEMENTS CALCULATE THE VELOCITY COM 
PONENTS U, V, AND W IN

C THE BOUNDARY LAYER

C

60 S=SIN(PSI(L))

Cl^COS(PSKD)

W(M, L)=(B/(2. 0*A))*((4. 0*RE)**0. 333)*(RC-LR(M)*S+(C/
(RC+R(M)*S)))

UP~(A/(RC+R(M)*S))+((1. 0/(4. 0*RE))**0. 333)

U(M, L)=UP*S

V(M, L)=UP*C1

GO TO 70

C

C THE STATEME NTS ABOVE CALCULATE THE VELOCITY COM 
PONENTS U,V, AND W

C OUTSIDE THE BOUNDARY LAYER

C

65 U(NPl,L)=0.0

C

C THE ABOVE SETS THE U-COMPONENT OF VELOCITY AT THE 
WALL EQUAL TO ZERO

C

70 M=M-1

IF(M-l)80, 45, 45
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L=lP 1

IF(L-JJ)85, 85, 100

85 M=NP1

GO TO 45

100 DO101L=l,JJ

U(1,L)=U(1, 1)

101 V(1,L)=V(1, 1)

J2=2*J

DO 106 L=l, JJ

SUM1=O. 0

DO 105 M=2, N, 2

105 SUMI-SUMI -W(M-1, L)*R(M-l)+4. 0*W(M, L)*R(M)+W(M+1, L 
*R(M+1)

106 FPSI(L)=DELTAR*SUMl/3.0

SUMI 1=0. 0

DO 107 L=2, J2, 2

107 SUMll=SUMll+FPSI(L-l)+4. 0*FPSI(L)+FPSI(L+1)

WINTGL=(8. 0/PI)*SUMll*DELPSI/3. 0

DO 108 L=l, JJ

DO 108 M=l, NP1

U(M, L)=0. 0

108 V(M,L)=0.0
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RETURN

END
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SUBROUTINE TRIDA.G(N, A, BB, C, D, SI)

C

C THE PURPOSE OF THIS SUBROUTINE IS TO SOLVE A SY STEM 
OF LINEAR

C EQUATIONS, THE COEFFICIENT MA TRIX OF WHICH IS TRI- 
DIAGONAL

C

DOUBLE PRECISION W( 100), A( 100), BB(100), C (100), D(100),
G(100),

lS(100)

W(1)=A(1)

DO 10 1=2, N

10 W(I)=A(I)-C(I)*(BB(I-1) / W(I-1))

G(1)=D(1)/W(1)

DO 15 1=2, N

15 G(I)=(D(I)-C(I)*G(I-1))/W(I)

S1(N)=G(N)

20 I=N-1

21 S1(I)=G(I)-(BB(I)*S1(I+1))/W(I)

1=1-1

IF (1-1)25,21,21

25 RETURN

END
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