2,278 research outputs found

    Asteroseismic Signatures of Stellar Magnetic Activity Cycles

    Full text link
    Observations of stellar activity cycles provide an opportunity to study magnetic dynamos under many different physical conditions. Space-based asteroseismology missions will soon yield useful constraints on the interior conditions that nurture such magnetic cycles, and will be sensitive enough to detect shifts in the oscillation frequencies due to the magnetic variations. We derive a method for predicting these shifts from changes in the Mg II activity index by scaling from solar data. We demonstrate this technique on the solar-type subgiant beta Hyi, using archival International Ultraviolet Explorer spectra and two epochs of ground-based asteroseismic observations. We find qualitative evidence of the expected frequency shifts and predict the optimal timing for future asteroseismic observations of this star.Comment: 5 pages including 3 figures and 1 table, MNRAS Letters accepte

    Pedometers and Aerobic Capacity: Evaluating an Elementary After-School Running Program

    Get PDF
    Childhood obesity affects 1 of every 6 youth in the United States. One contributing factor to this statistic is a lack of physical activity (PA). Demands related to accountability which are placed on educators to demonstrate academic achievement often result in resistance to allocating time during the school day for PA. One possible solution is to consider utilizing time after school to integrate PA programs. The purpose of this study was to assess the impact of a 12-week after-school pedometer-focused PA program on aerobic capacity and to examine the relationship between step count and aerobic capacity in elementary school aged children. A group of elementary students (n=24; 9.5±0.9 years) participated in a 12-week pedometer-focused PA program that included pretraining and posttraining fitness testing via the 20-meter version of the PACER test. Paired sample t-tests revealed significant differences between the pretest (M=21.0 laps, SD=9.9) and posttest (M=25.2 laps, SD=12.2) scores (t=4.04, P≤0.001). A Pearson correlation revealed no significant relationship between individual step count and the difference between PACER pre- and posttest (r=0.318, P=0.130). The program improved aerobic capacity, but an increase in pedometer-calculated step count was not a predictor

    Minimum-Uncertainty Angular Wave Packets and Quantized Mean Values

    Get PDF
    Uncertainty relations between a bounded coordinate operator and a conjugate momentum operator frequently appear in quantum mechanics. We prove that physically reasonable minimum-uncertainty solutions to such relations have quantized expectation values of the conjugate momentum. This implies, for example, that the mean angular momentum is quantized for any minimum-uncertainty state obtained from any uncertainty relation involving the angular-momentum operator and a conjugate coordinate. Experiments specifically seeking to create minimum-uncertainty states localized in angular coordinates therefore must produce packets with integer angular momentum.Comment: accepted for publication in Physical Review

    Book Reviews

    Get PDF

    Large-uncertainty intelligent states for angular momentum and angle

    Get PDF
    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases.Comment: 20 pages, 9 figures, submitted to J. Opt. B special issue in connection with ICSSUR 2005 conferenc

    Bad bosses and self-verification: the moderating role of core self-evaluations with trust in workplace management

    Get PDF
    Who responds most strongly to supervisor social undermining? Building on self-verification theory (Swann, 1983, 1987), we theorize that employees with positive views of the self (i.e., higher core self-evaluations [CSEs]) who also maintain higher trust in workplace management are more likely to experience heightened stress and turnover intentions when undermined. We argue that this subset of employees (high CSE, high trust) are more likely to feel misunderstood when undermined by their supervisor and that this lack of self-verification partially explains their stronger responses to supervisor undermining. We find initial support for the first part of our model in a study of 259 healthcare workers in the United States and replicate and extend our findings in the second study of 330 employees in the United Kingdom. Our results suggest that the employees Human Resources often wishes to attract and retain—employees with high CSE and high trust in workplace management—react most strongly to supervisor social undermining

    On the appearance of Eisenstein series through degeneration

    Full text link
    Let Γ\Gamma be a Fuchsian group of the first kind acting on the hyperbolic upper half plane H\mathbb H, and let M=Γ\HM = \Gamma \backslash \mathbb H be the associated finite volume hyperbolic Riemann surface. If γ\gamma is parabolic, there is an associated (parabolic) Eisenstein series, which, by now, is a classical part of mathematical literature. If γ\gamma is hyperbolic, then, following ideas due to Kudla-Millson, there is a corresponding hyperbolic Eisenstein series. In this article, we study the limiting behavior of parabolic and hyperbolic Eisenstein series on a degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. If γΓ\gamma \in \Gamma corresponds to a degenerating hyperbolic element, then a multiple of the associated hyperbolic Eisenstein series converges to parabolic Eisenstein series on the limit surface.Comment: 15 pages, 2 figures. This paper has been accepted for publication in Commentarii Mathematici Helvetic

    Experts' Judgments of Management Journal Quality:An Identity Concerns Model

    Get PDF
    Many lists that purport to gauge the quality of journals in management and organization studies (MOS) are based on the judgments of experts in the field. This article develops an identity concerns model (ICM) that suggests that such judgments are likely to be shaped by the personal and social identities of evaluators. The model was tested in a study in which 168 editorial board members rated 44 MOS journals. In line with the ICM, respondents rated journal quality more highly to the extent that a given journal reflected their personal concerns (associated with having published more articles in that journal) and the concerns of a relevant ingroup (associated with membership of the journal’s editorial board or a particular disciplinary or geographical background). However, judges’ ratings of journals in which they had published were more favorable when those journals had a low-quality reputation, and their ratings of journals that reflected their geographical and disciplinary affiliations were more favorable when those journals had a high-quality reputation. The findings are thus consistent with the view that identity concerns come to the fore in journal ratings when there is either a need to protect against personal identity threat or a meaningful opportunity to promote social identity

    Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables

    Full text link
    While the {\it Helioseismic and Magnetic Imager} (HMI) onboard the {\it Solar Dynamics Observatory} (SDO) provides Doppler velocity [VV], continuum intensity [ICI_C], and line-depth [LdLd] observations, each of which is sensitive to the five-minute acoustic spectrum, the {\it Atmospheric Imaging Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700 Angstrom bands -- that are partly formed in the upper photosphere and have good sensitivity to acoustic modes. In this article we consider the characteristics of the spatio--temporal Fourier spectra in AIA and HMI observables for a 15-degree region around NOAA Active Region 11072. We map the spatio--temporal-power distribution for the different observables and the HMI Line Core [ILI_L], or Continuum minus Line Depth, and the phase and coherence functions for selected observable pairs, as a function of position and frequency. Five-minute oscillation power in all observables is suppressed in the sunspot and also in plage areas. Above the acoustic cut-off frequency, the behaviour is more complicated: power in HMI ICI_C is still suppressed in the presence of surface magnetic fields, while power in HMI ILI_L and the AIA bands is suppressed in areas of surface field but enhanced in an extended area around the active region, and power in HMI VV is enhanced in a narrow zone around strong-field concentrations and suppressed in a wider surrounding area. The relative phase of the observables, and their cross-coherence functions, are also altered around the active region. These effects may help us to understand the interaction of waves and magnetic fields in the different layers of the photosphere, and will need to be taken into account in multi-wavelength local helioseismic analysis of active regions.Comment: 18 pages, 15 figures, to be published in Solar Physic
    corecore