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Minimum-uncertainty angular wave packets and quantized mean values
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Uncertainty relations between a bounded coordinate operator and a conjugate momentum operator fre-
guently appear in quantum mechanics. We prove that physically reasonable minimum-uncertainty solutions to
such relations have quantized expectation values of the conjugate momentum. This implies, for example, that
the mean angular momentum is quantized for any minimum-uncertainty state obtained from any uncertainty
relation involving the angular-momentum operator and a conjugate coordinate. Experiments specifically seek-
ing to create minimum-uncertainty states localized in angular coordinates therefore must produce packets with
integer angular momentum.

PACS numbs(s): 03.65.Bz, 03.65.Sq

The use of angular-coordinate and phase operators in Even with periodic and continuous coordinates, some dif-
guantum mechanics requires more care than perhaps migfitulties may remain. In the Hilbert space of square-
be expected. Consider the relatively simple example of antegrable functions on the circle, where the angular-
particle moving on a circle of unit radius. Classically, a pointmomentum operator is unbounded below and above, the
particle is necessarily located at a single value of the periodiaction of the operators“sg¢ and §'n¢ on a state can be
angular coordinateb, e (— m,]. The corresponding quan- defined by multiplication by cas and sinp, respectively.
tum wave function, however, is an object extended arounthijs implies the commutatc[rcés¢,§in¢]=0. However, in
the circle and so can be directly affected by the nontriviala more general context where the operator conjugate to the
topology. A simple consequence is that, in contrast to theoordinates is bounded below or above, the introduction of
continuous spectrum of the linear momentum of a free parsyjtable coordinate operators involves further subtleties. An
ticle on a(topologically trivia) line, the angular momentum example is the harmonic-oscillator number operatorfor

= —1id, (in units with7=1) on the circle has a point spec- \yhich the coordinate operator§sb and sh¢ defined by
trum imposed by the dual requirements of continuity a”danalogs of Eq(1) do not commutg4—12]. Moreover, the
periodicity of the eigenstates. A more subtle consequence i§se of cosine and sine operators may in general be inad-
difficulty in defining an angular-coordinate _operator. _The d"equate to treat all physically interesting quantifis].
rect use at the quantum level of the classical coordiggte Uncertainty relations involving the angular momentum
causes trouble ag,=m, where any derivatives o, ac- e affected by the choice of angular-coordinate operators.

quire 5-function contributions from the discontinuity. For ex- pefine for each operatot and statdy) the uncertainty
ample, the Dirac-type [1,2] commutator relation

[L,p]=—i .is problgmqtic forg= ¢, . The attempt to cir- AXE[(X2>—(X>2]1’2. )
cumvent this by using instead a continuous variapte ¢

e (—,») is also unsatisfactory because single-valuedne
restricts the Hilbert space to the subspace af-fZriodic
functions, whichinter alia excludes the coordinat¢. as an
observable.

Many of the difficulties arising from the use af, or
¢ can be sidestepped by selecting instead angular coor
nates that ardboth periodic and continuous. However, a
single such quantity cannot uniquely specify a point on th
circle because periodicity implies extrema, which excludes ?tk‘h
one-to-one correspondence and hence is incompatible wi
uniqueness. A relatively simply choid@] is to adopttwo
angular-coordinate operatorSsgpand sin¢, defined to sat-
isfy the commutation relations

S¥he Robertson-typgl4] uncertainty relation
ALAp =3 (3

dii“?‘ incorrect for several reasons. For example, si\ef, is
bounded within a maximum, there is a physically acceptable
éimit with sufficiently smallAL that produces a violation of

e inequality. An alternative fo$p= ¢, involves modifying

e definition ofA ¢, or taking into account the appearance

of s-function contributions akp,= . This yields a more

complicated form of the uncertainty relatiph5—17

¢>1
[L,cosp]=i SAin(;S, [L,sAinqS]:—i c0s. (1) AL1_3(A¢D)2/W2/2f(A¢p), (4)

Classically, this would correspond to the identificationwheref(A¢,) varies fromf=1 atA¢,=0 to f=4.375 at
(x,y)—(cosp,sing) on the unit circle. Ap,= 7/\/3. If instead one chooses the angular coordinates
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cos¢ and §h¢, then the commutatorgl) result in yet an- uncertainty approaching zero, but they cannot converge. This
other set of angular-momentum uncertainty relations follows from a theorem for self-adjoint operators on Hilbert
spaceg19] stating that if there exists a convergent sequence
AL Actsp=1|(sing)|, AL Asing=1%|(cds¢)|. (5) of unit-normalized states such thatA{a)/n)—0 as
n—o, thenae o,. Moreover, if insteady lies in the resol-
In the present work, we focus in particular on minimum- ventp, the desired sequences cannot exist. This follows from
uncertainty solutions to uncertainty relations involving angu-another theorem for self-adjoint operatdd®] stating that
lar or phase coordinatd4.8]. In topologically trivial situa- for unit-normalized states in the domain Afand fora e p
tions such as the free particle or the harmonic oscillatorthe norm|[(A— a)|n)| is greater than a positive constant
minimum-uncertainty solutions to the uncertainty relationsOne way of seeing this last result is that if such a sequence
for the position and momentum operatofsand P exist in  did exist, then in the limiaA A— 0 for whichc— 0 the resol-
the Hilbert space for arbitrary finite expectation values ofvent operatoiR(«,A) could not be bounded, contradicting
(X) and (P). Naively, one might expect that minimum- the assumptiom e p.
uncertainty packets for angular coordinates and their conju- The above results already establish, independently of any
gate momentum also have continuously adjustable mean valncertainty relation, that the uncertainty of a self-adjoint op-
ues. However, this intuition is incorrect. Although the erator cannot be dialed to zero while maintaining constant
detailed form of the minimum-uncertainty solutions dependsxpectation unless the expectation value is an eigenvalue.
on the particular angular-coordinate uncertainty relations infFrom the physical viewpoint, however, there are two reasons
volved, it turns out that minimum-uncertainty packets ge-why this is less restrictive than it might appear. First, the
nerically exist only forquantizedexpectation values of the result does not preclude the possibility that for a given situ-
associated conjugate momentum. ation the uncertainty could be dialed close to zero, i.e., the
In what follows, we provide a detailed proof of this result constantc might be very small. Second, the result assumes
and discuss some consequences. We begin with a discussioonvergence of the sequence in the Hilbert space, which may
of limitations on the uncertainty of a general self-adjointnot be the case in all situations of physical interest. For ex-
operator and then turn our attention to the stronger constrairgmple, the position operator on the line has no point spec-
that follows for certain operators from the requirement oftrum and therefore by the above argument no constant-
minimum uncertainty imposed via an uncertainty relation.expectation packet can be constructed with uncertainty that
Finally, we discuss some examples and extensions of thean be varied to reach zero. Thus, the above argument ex-
results. cludes a freely evolving Gaussian packet because the limit-
The analysis uses a number of basic results in the theoring state is as function, which is not a state in the Hilbert
of linear operators on Hilbert spac¢$9]. The following  space.
summarizes some of our notation. LAtbe a self-adjoint We next show that for certain operators the result can be
operator in a Hilbert space with domain(A) and letz be a  substantially strengthened if we take into account minimum-
complex number that isot an eigenvalue ofA. Then, the uncertainty constraints arising from an uncertainty relation.
associated resolvent opera®(z,A)=(A—z) ! is well de- We are interested in particular in the situation of minimum-
fined. The resolvent set is comprised of those values of  uncertainty wave packets for which the uncertainty relation
for which R(z,A) is bounded. The spectrum of is connects a bounded opera®with an operatoA having a
o=%l1p. It contains two components: the point spectrumdiscrete spectrum. Operators of these types frequently occur
o,, consisting of the eigenvalues #f and the remainder, in physics. For exampleB could represent the coordinate
which we call the continuum and denote by. We refer to  operator on a compact manifold without boundary, such as
the spectrum as discrete in the special case where it considtse n sphere, withA being the associated operator for the
entirely of isolated eigenvalues with finite multiplicities. (angulaj momentum.
Also, by definition the extended discrete spectrum of an un- Consider two self-adjoint operatofsandB, defined in a
bounded operator differs from the spectrum by the additiorHilbert space7 and satisfying
of the point at infinity.
Consider a self-adjoint operatgk on a Hilbert space [AB]=iC (6)

7. For an elemeniy e Z(A?), the uncertaintA A, defined ) )
by Eq.(2) is the norm|[(A—(A))|#)|. First, we examine the on a subspace ofZ. We assumé\ has a discrete spectrum

possibility of varying to zero the uncertainty while keeping @"dB is bounded. The uncertainty relation obeyed by these
fixed the expectation. We are therefore interested in a se2Perators for any given state[i20]

quence{|n)} of unit-normalized states convergent in the Hil- 1

bert space such thgA)=(n|A|n)=«a .2 is constant and AAAB=3|(C)]. 7)

such that ”.m‘?wAA“:O.' , . We seek minimum-uncertainty solutiong) of Eq. (7),
Now, « is in the point spectrumy, in the continuum  gefined as normalized solutions of the limiting equality. In
o, orin the resolvenp. If « is in the point spectrum, there general, such solutions are called squeezed sta@sThey

must exist a unit-normalized staﬂaf}e@(A) such that  gre in one-to-one correspondence with solutipps of the
Aly)y=a|y). Itis then in general possible to find convergent equation[20]

sequences of the desired type. In particular, the constant se-

quence{|n)=|y)Vn} satisfies the requirements. Noncon- (A—a)|y)=iS(B—B)|y), (8)
stant convergent sequences may also exist. If, however,

in the continuumo, then there may exist sequences withwherea=(A),5=(B), and



1980 V. ALAN KOSTELECKY AND BOGDAN TUDOSE 53

SEAA/AB:|<C>|/2(AB)2 9) which is an angular-momentum eigenstate with eigenvalue
(L). According to our result{L) must be integer for the
is a real constant called the squeezing. The reality,08B, solutions|S) to exist. In the context of the limit in Eq12),
and S follows from the assumption thai, B, andC are this agrees with the usual requirement of quantized eigenval-
self-adjoint(observablg ues for eigenstates &f. It can also be seen directly from Eq.
Supposex is in the resolvent seb of A. Then, Eq.(8)  (11) to be necessary sind&) is required to be periodic in
can be expressed in terms of the resolvent opelRfar,A) ¢ with period 27 to remain consistently defind@4].
as As another example, consider the number operistdor
the harmonic oscillator. This operator has a discrete spec-
[iISR(a,A)(B—B)—1]|¢)=0. (100 trum. Our analysis therefore shows that the expectatitn
is integer valued for any state minimizing an uncertainty
relation involvingN and a(bounded phase operator.
The stronger constraints we have obtained above make
, " use of the uncertainty relation E¢?). For the special case
can be obtained22] from the extended spectrum(A) of  \yheren is the angular-momentum operator on the circle, the

A via the transformatiorf(\)=(\—a) 1 for A e a(A), it alternative form(4) of the uncertainty relation might be con-
follows thato(R) is bounded and consists of isolated eigen-giqered instead. In this equatiohl may be interpreted as

values of finite multiplicity possibly accumulating only at usual, but the definition of ¢, involves determining the

zero. The resolve_nt o.peratﬁ(a,A)_ is therefore (?ompz_ict. minimum in a real parametey of a functional ofg,:
Since by assumptioB is bounded, it follows thaX itself is

also compact. Thus, the spectrum>fis also bounded and -
consists of isolated eigenvalues with finite multiplicity that (Aqﬁp)zzminf dbp * (dpt ) ot ppty). (13)
can accumulate only at zero. Since one must be an eigen- y oo
value of X, this means that there can be at most a finite ] )
number of squeezed states with fixedand 8 for which S Next, we show that the requirement of discréte extends
lies below any given value. In fact, not only are such solu-0 this case also. _ _ _
tions finite in number by they are also generically rare: they L€t @ general wave function on the circle be written as
are in one-to-one correspondence with the eigenvalues of ,
R(a,A)(B— B) lying on the imaginary axis of the complex P(Pp)=r(p)exdio(¢p)], (14)
plane. . . .
For(A) e p, the above argument excludes the existence ofVith (#p) and (¢y) both real functions, not necessarily
squeezed states allowing the dialing®énd hence oAA to  POSitive. Suppose (¢,) is kept fixed, which also fixes
zero. In fact, the same argument shows there is no possibilig§ #p- Then, the minimum value AL can be obtained by
in any interval of dialing the minimum-uncertainty values Varying with respect tod(¢;). A short calculation shows
AA at constan{A), unless(A) is in the spectrum oA. For that the minimum is attained i#(¢;) is linear in ¢,. The
an operator that has a spectrum without a continuum, it folf€quirement of periodicity o then restricts the possible
lows that any physically reasonable minimum-uncertaintychoices t06(¢p)=md¢,+k, wherem is integer or half-
wave packet must have quantized mean value. In particulafitéger andk is a constant. For these choices, it can also be
the angular momentum of a minimum-uncertainty waveShown that (L)=m. This means that any minimum-
packet on the circle must be integer valued. uncertainty packet based dd) must also have a discrete
With the main proof completed, we can illustrate some ofvalue of(L). _ -
the ideas via an explicit example. Consider the special case The case of integem has been pursued in detail in Ref.
of circular squeezed staté€S9 used in Ref[23] for the  [17], where solutions are shown to exist af{d ¢;) is nu-
construction of elliptical squeezed states following a classimerically computed. In this case, the value ®E can be
cal keplerian orbit in a planar Rydberg atom. The CSS areontinuously dialed to zero for solutions with fixed integer
minimum-uncertainty  states in the Hilbert space{L). Whether or not solutions exist for half-integer, they
J#=L23(SY on the circle, determined from the uncertainty could not have a value dfL less than the limiting value. In
relations (7) with the identificatons A=L=—ig,, this case, the limiting value turns out to Ag =1/2. .
B=sing, andC= cosp, where si¢ and e are defined The suggestion has also been made of combining the idea
via multiplication by sim and cos, respectively. To obtain of Wel_l-deflned angL_JIar coor_dmates with the |o!ea pf more
a packet centered about the point witk=1 on the unit com_pllcated uncertainty relatiofd5]. The uncertainty in the _
circle, we imposQSAinqS):O and(cds$)>0. The solution of conjugate coordinate to the angular-momentum operator is

This is an eigenvalue equation for the operator
X=iSR(«,A)(B—8). Since A has discrete spectrum and
since the spectrur(R) of the resolvent operatdR(«,A)

Eq. (8) is defined as
~ 2 12
1 12 (A cdsp)?+ (A sing)?\*
S=|—F= S +i(L , 11 Agp= = = , 15
S) (277|0(2S) eXp(S cospti(Lye), (1D ¢ (COs)?+(singy)? 49
whereS is the squeezing. In the limg—0, which ranges from zero to infinity. The associated uncer-

tainty relation is

1 1/2
9-1%=( 53] ewime. a2 ALaged 19
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a relation that follows directly5] from the two uncertainty behavior of minimum-uncertainty packets. For example,
relations(5). In Eq.(16), the value; cannot be attained. This minimum-uncertainty radial electron wave packets in Ryd-
is a reflection of the impossibility of simultaneously solving berg atoms have been shown to evolve through a complex
for the two equalities(5), which in turn is a reflection of sequence of revivals, fractional revivals, and super revivals
rotational invarianc¢23]. Following the construction of the [26-30. Specific attention has been given recently to creat-
CSS, we can seek a minimum-uncertainty solution centereghg in the laboratory packets with minimum uncertainty in an
aboutx=1 by setting(sing) = 0. Equation(16) then reduces angular coordinate. For example, experimental efforts are
to a weakened version of the second inequality in &3  presently underway to produce such packets orbiting the
which itself must still hold. So the corresponding minimum- hycleus of a Rydberg atofi81,37. Localized packets with
uncertainty solution is again a CSS, which has quantize@ioninteger angular-momentum expectation can certainly be
values of(L). o _ created, for example, by superposing angular-momentum
The general result that any minimum-uncertainty state hagjgenstates with a gaussian weighting of coefficients with

discrete angular-momentum expectation holds for any mag;,ninteger mean value. However, our analysis shows that

froskconpltc ?r? d¥nV'e\rNed asi thl?nlli?qtlrgiOfri Iarr?e ?uran)t(urrnn Sly Stfhmgny such packets cannot have minimum angular uncertainty.
axen 1o thé macroscopic S means, for example, tha xperiments performed to study the classical limit of quan-

any macroscop_ic obje_ct either has an _integer-valued anguI%m mechanics via the behavior of minimum-uncertainty an-
momentum or is not in a state of minimum angular uncer-

tainty gular packets must of necessity involve states with integer
L . . angular momentum.
The issue of the physically correct form of the uncertainty
relations and its implications is of more than theoretical in- We thank R. Bluhm for discussion and a critical reading
terest. In recent years, striking results have been found in thef the manuscript.
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