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Minimum-uncertainty angular wave packets and quantized mean values
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Uncertainty relations between a bounded coordinate operator and a conjugate momentum operator fre-
quently appear in quantum mechanics. We prove that physically reasonable minimum-uncertainty solutions to
such relations have quantized expectation values of the conjugate momentum. This implies, for example, that
the mean angular momentum is quantized for any minimum-uncertainty state obtained from any uncertainty
relation involving the angular-momentum operator and a conjugate coordinate. Experiments specifically seek-
ing to create minimum-uncertainty states localized in angular coordinates therefore must produce packets with
integer angular momentum.

PACS number~s!: 03.65.Bz, 03.65.Sq

The use of angular-coordinate and phase operators in
quantum mechanics requires more care than perhaps might
be expected. Consider the relatively simple example of a
particle moving on a circle of unit radius. Classically, a point
particle is necessarily located at a single value of the periodic
angular coordinatefpP(2p,p#. The corresponding quan-
tum wave function, however, is an object extended around
the circle and so can be directly affected by the nontrivial
topology. A simple consequence is that, in contrast to the
continuous spectrum of the linear momentum of a free par-
ticle on a~topologically trivial! line, the angular momentum
L[2 i ]f ~in units with\51) on the circle has a point spec-
trum imposed by the dual requirements of continuity and
periodicity of the eigenstates. A more subtle consequence is
difficulty in defining an angular-coordinate operator. The di-
rect use at the quantum level of the classical coordinatefp
causes trouble atfp5p, where any derivatives offp ac-
quired-function contributions from the discontinuity. For ex-
ample, the Dirac-type @1,2# commutator relation
@L,f#52 i is problematic forf[fp . The attempt to cir-
cumvent this by using instead a continuous variablef[fc
P(2`,`) is also unsatisfactory because single-valuedness
restricts the Hilbert space to the subspace of 2p-periodic
functions, whichinter alia excludes the coordinatefc as an
observable.

Many of the difficulties arising from the use offp or
fc can be sidestepped by selecting instead angular coordi-
nates that areboth periodic and continuous. However, a
single such quantity cannot uniquely specify a point on the
circle because periodicity implies extrema, which excludes a
one-to-one correspondence and hence is incompatible with
uniqueness. A relatively simply choice@3# is to adopttwo
angular-coordinate operators coˆsf and siˆnf, defined to sat-
isfy the commutation relations

@L,côsf#5 i sînf, @L,sînf#52 i côsf. ~1!

Classically, this would correspond to the identification
(x,y)→(cosf,sinf) on the unit circle.

Even with periodic and continuous coordinates, some dif-
ficulties may remain. In the Hilbert space of square-
integrable functions on the circle, where the angular-
momentum operator is unbounded below and above, the
action of the operators coˆsf and siˆnf on a state can be
defined by multiplication by cosf and sinf, respectively.
This implies the commutator@ côsf,sînf#50. However, in
a more general context where the operator conjugate to the
coordinates is bounded below or above, the introduction of
suitable coordinate operators involves further subtleties. An
example is the harmonic-oscillator number operatorN, for
which the coordinate operators coˆsf and siˆnf defined by
analogs of Eq.~1! do not commute@4–12#. Moreover, the
use of cosine and sine operators may in general be inad-
equate to treat all physically interesting quantities@13#.

Uncertainty relations involving the angular momentum
are affected by the choice of angular-coordinate operators.
Define for each operatorX and stateux& the uncertainty

DX[@^X2&2^X&2#1/2. ~2!

The Robertson-type@14# uncertainty relation

DLDfp>
1
2 ~3!

is incorrect for several reasons. For example, sinceDfp is
bounded within a maximum, there is a physically acceptable
limit with sufficiently smallDL that produces a violation of
the inequality. An alternative forf[fp involves modifying
the definition ofDfp or taking into account the appearance
of d-function contributions atfp5p. This yields a more
complicated form of the uncertainty relation@15–17#

DL
Dfp

123~Dfp!
2/p2> 1

2 f ~Dfp!, ~4!

where f (Dfp) varies from f51 at Dfp50 to f.4.375 at
Dfp5p/A3. If instead one chooses the angular coordinates
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côsf and siˆnf, then the commutators~1! result in yet an-
other set of angular-momentum uncertainty relations

DL Dcôsf> 1
2 u^sînf&u, DL Dsînf> 1

2 u^côsf&u. ~5!

In the present work, we focus in particular on minimum-
uncertainty solutions to uncertainty relations involving angu-
lar or phase coordinates@18#. In topologically trivial situa-
tions such as the free particle or the harmonic oscillator,
minimum-uncertainty solutions to the uncertainty relations
for the position and momentum operatorsX andP exist in
the Hilbert space for arbitrary finite expectation values of
^X& and ^P&. Naively, one might expect that minimum-
uncertainty packets for angular coordinates and their conju-
gate momentum also have continuously adjustable mean val-
ues. However, this intuition is incorrect. Although the
detailed form of the minimum-uncertainty solutions depends
on the particular angular-coordinate uncertainty relations in-
volved, it turns out that minimum-uncertainty packets ge-
nerically exist only forquantizedexpectation values of the
associated conjugate momentum.

In what follows, we provide a detailed proof of this result
and discuss some consequences. We begin with a discussion
of limitations on the uncertainty of a general self-adjoint
operator and then turn our attention to the stronger constraint
that follows for certain operators from the requirement of
minimum uncertainty imposed via an uncertainty relation.
Finally, we discuss some examples and extensions of the
results.

The analysis uses a number of basic results in the theory
of linear operators on Hilbert spaces@19#. The following
summarizes some of our notation. LetA be a self-adjoint
operator in a Hilbert space with domainD(A) and letz be a
complex number that isnot an eigenvalue ofA. Then, the
associated resolvent operatorR(z,A)[(A2z)21 is well de-
fined. The resolvent setr is comprised of those values ofz
for which R(z,A) is bounded. The spectrum ofA is
s[C /r. It contains two components: the point spectrum
sp , consisting of the eigenvalues ofA; and the remainder,
which we call the continuum and denote bysc . We refer to
the spectrum as discrete in the special case where it consists
entirely of isolated eigenvalues with finite multiplicities.
Also, by definition the extended discrete spectrum of an un-
bounded operator differs from the spectrum by the addition
of the point at infinity.

Consider a self-adjoint operatorA on a Hilbert space
H. For an elementcPD(A2), the uncertaintyDAc defined
by Eq.~2! is the normi(A2^A&)uc&i . First, we examine the
possibility of varying to zero the uncertainty while keeping
fixed the expectation. We are therefore interested in a se-
quence$un&% of unit-normalized states convergent in the Hil-
bert space such that^A&[^nuAun&[aPR is constant and
such that limn→`DAn50.

Now, a is in the point spectrumsp , in the continuum
sc , or in the resolventr. If a is in the point spectrum, there
must exist a unit-normalized stateuc&PD(A) such that
Auc&5auc&. It is then in general possible to find convergent
sequences of the desired type. In particular, the constant se-
quence$un&5uc&;n% satisfies the requirements. Noncon-
stant convergent sequences may also exist. If, however,a is
in the continuumsc then there may exist sequences with

uncertainty approaching zero, but they cannot converge. This
follows from a theorem for self-adjoint operators on Hilbert
spaces@19# stating that if there exists a convergent sequence
of unit-normalized states such that (A2a)un&→0 as
n→`, thenaPsp . Moreover, if insteada lies in the resol-
ventr, the desired sequences cannot exist. This follows from
another theorem for self-adjoint operators@19# stating that
for unit-normalized states in the domain ofA and foraPr
the normi(A2a)un&i is greater than a positive constantc.
One way of seeing this last result is that if such a sequence
did exist, then in the limitDA→0 for whichc→0 the resol-
vent operatorR(a,A) could not be bounded, contradicting
the assumptionaPr.

The above results already establish, independently of any
uncertainty relation, that the uncertainty of a self-adjoint op-
erator cannot be dialed to zero while maintaining constant
expectation unless the expectation value is an eigenvalue.
From the physical viewpoint, however, there are two reasons
why this is less restrictive than it might appear. First, the
result does not preclude the possibility that for a given situ-
ation the uncertainty could be dialed close to zero, i.e., the
constantc might be very small. Second, the result assumes
convergence of the sequence in the Hilbert space, which may
not be the case in all situations of physical interest. For ex-
ample, the position operator on the line has no point spec-
trum and therefore by the above argument no constant-
expectation packet can be constructed with uncertainty that
can be varied to reach zero. Thus, the above argument ex-
cludes a freely evolving Gaussian packet because the limit-
ing state is ad function, which is not a state in the Hilbert
space.

We next show that for certain operators the result can be
substantially strengthened if we take into account minimum-
uncertainty constraints arising from an uncertainty relation.
We are interested in particular in the situation of minimum-
uncertainty wave packets for which the uncertainty relation
connects a bounded operatorB with an operatorA having a
discrete spectrum. Operators of these types frequently occur
in physics. For example,B could represent the coordinate
operator on a compact manifold without boundary, such as
the n sphere, withA being the associated operator for the
~angular! momentum.

Consider two self-adjoint operatorsA andB, defined in a
Hilbert spaceH and satisfying

@A,B#5 iC ~6!

on a subspace ofH. We assumeA has a discrete spectrum
andB is bounded. The uncertainty relation obeyed by these
operators for any given state is@20#

DADB> 1
2 u^C&u. ~7!

We seek minimum-uncertainty solutionsuc& of Eq. ~7!,
defined as normalized solutions of the limiting equality. In
general, such solutions are called squeezed states@21#. They
are in one-to-one correspondence with solutionsuc& of the
equation@20#

~A2a!uc&5 iS~B2b!uc&, ~8!

wherea5^A&,b5^B&, and
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S[DA/DB5u^C&u/2~DB!2 ~9!

is a real constant called the squeezing. The reality ofa, b,
and S follows from the assumption thatA, B, andC are
self-adjoint~observable!.

Supposea is in the resolvent setr of A. Then, Eq.~8!
can be expressed in terms of the resolvent operatorR(a,A)
as

@ iSR~a,A!~B2b!21#uc&50. ~10!

This is an eigenvalue equation for the operator
X[ iSR(a,A)(B2b). SinceA has discrete spectrum and
since the spectrums(R) of the resolvent operatorR(a,A)
can be obtained@22# from the extended spectrums̃(A) of
A via the transformationf (l)5(l2a)21 for lPs̃(A), it
follows thats(R) is bounded and consists of isolated eigen-
values of finite multiplicity possibly accumulating only at
zero. The resolvent operatorR(a,A) is therefore compact.
Since by assumptionB is bounded, it follows thatX itself is
also compact. Thus, the spectrum ofX is also bounded and
consists of isolated eigenvalues with finite multiplicity that
can accumulate only at zero. Since one must be an eigen-
value of X, this means that there can be at most a finite
number of squeezed states with fixeda andb for which S
lies below any given value. In fact, not only are such solu-
tions finite in number by they are also generically rare: they
are in one-to-one correspondence with the eigenvalues of
R(a,A)(B2b) lying on the imaginary axis of the complex
plane.

For ^A&Pr, the above argument excludes the existence of
squeezed states allowing the dialing ofS and hence ofDA to
zero. In fact, the same argument shows there is no possibility
in any interval of dialing the minimum-uncertainty values
DA at constant̂A&, unlesŝ A& is in the spectrum ofA. For
an operator that has a spectrum without a continuum, it fol-
lows that any physically reasonable minimum-uncertainty
wave packet must have quantized mean value. In particular,
the angular momentum of a minimum-uncertainty wave
packet on the circle must be integer valued.

With the main proof completed, we can illustrate some of
the ideas via an explicit example. Consider the special case
of circular squeezed states~CSS! used in Ref.@23# for the
construction of elliptical squeezed states following a classi-
cal keplerian orbit in a planar Rydberg atom. The CSS are
minimum-uncertainty states in the Hilbert space
H5L2(S1) on the circle, determined from the uncertainty
relations ~7! with the identifications A[L52 i ]f ,
B[sînf, andC[ côsf, where siˆnf and côsf are defined
via multiplication by sinf and cosf, respectively. To obtain
a packet centered about the point withx51 on the unit
circle, we imposêsînf&50 and^côsf&.0. The solution of
Eq. ~8! is

uS&5S 1

2pI 0~2S! D
1/2

exp~S cosf1 i ^L&f!, ~11!

whereS is the squeezing. In the limitS→0,

uS&→uS0&5S 1

2p D 1/2exp~ i ^L&f!, ~12!

which is an angular-momentum eigenstate with eigenvalue
^L&. According to our result,̂ L& must be integer for the
solutionsuS& to exist. In the context of the limit in Eq.~12!,
this agrees with the usual requirement of quantized eigenval-
ues for eigenstates ofL. It can also be seen directly from Eq.
~11! to be necessary sinceuS& is required to be periodic in
f with period 2p to remain consistently defined@24#.

As another example, consider the number operatorN for
the harmonic oscillator. This operator has a discrete spec-
trum. Our analysis therefore shows that the expectation^N&
is integer valued for any state minimizing an uncertainty
relation involvingN and a~bounded! phase operator.

The stronger constraints we have obtained above make
use of the uncertainty relation Eq.~7!. For the special case
whereA is the angular-momentum operator on the circle, the
alternative form~4! of the uncertainty relation might be con-
sidered instead. In this equation,DL may be interpreted as
usual, but the definition ofDfp involves determining the
minimum in a real parameterg of a functional offp :

~Dfp!
2[min

g
E

2p

p

dfp c* ~fp1g!fp
2c~fp1g!. ~13!

Next, we show that the requirement of discrete^L& extends
to this case also.

Let a general wave function on the circle be written as

c~fp!5r ~fp!exp@ iu~fp!#, ~14!

with r (fp) and u(fp) both real functions, not necessarily
positive. Supposer (fp) is kept fixed, which also fixes
Dfp . Then, the minimum value ofDL can be obtained by
varying with respect tou(fp). A short calculation shows
that the minimum is attained ifu(fp) is linear infp . The
requirement of periodicity onc then restricts the possible
choices tou(fp)5mfp1k, wherem is integer or half-
integer andk is a constant. For these choices, it can also be
shown that ^L&5m. This means that any minimum-
uncertainty packet based on~4! must also have a discrete
value of ^L&.

The case of integerm has been pursued in detail in Ref.
@17#, where solutions are shown to exist andf (Dfp) is nu-
merically computed. In this case, the value ofDL can be
continuously dialed to zero for solutions with fixed integer
^L&. Whether or not solutions exist for half-integerm, they
could not have a value ofDL less than the limiting value. In
this case, the limiting value turns out to beDL51/2.

The suggestion has also been made of combining the idea
of well-defined angular coordinates with the idea of more
complicated uncertainty relations@25#. The uncertainty in the
conjugate coordinate to the angular-momentum operator is
defined as

Df[S ~D côsf!21~D sînf!2

^côsf&21^sînf&2
D 1/2, ~15!

which ranges from zero to infinity. The associated uncer-
tainty relation is

DLDf. 1
2 , ~16!
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a relation that follows directly@5# from the two uncertainty
relations~5!. In Eq. ~16!, the value12 cannot be attained. This
is a reflection of the impossibility of simultaneously solving
for the two equalities~5!, which in turn is a reflection of
rotational invariance@23#. Following the construction of the
CSS, we can seek a minimum-uncertainty solution centered
aboutx51 by settinĝ sînf&50. Equation~16! then reduces
to a weakened version of the second inequality in Eq.~5!,
which itself must still hold. So the corresponding minimum-
uncertainty solution is again a CSS, which has quantized
values of^L&.

The general result that any minimum-uncertainty state has
discrete angular-momentum expectation holds for any mac-
roscopic body viewed as the limit of a large quantum system.
Taken to the macroscopic limit this means, for example, that
any macroscopic object either has an integer-valued angular
momentum or is not in a state of minimum angular uncer-
tainty.

The issue of the physically correct form of the uncertainty
relations and its implications is of more than theoretical in-
terest. In recent years, striking results have been found in the

behavior of minimum-uncertainty packets. For example,
minimum-uncertainty radial electron wave packets in Ryd-
berg atoms have been shown to evolve through a complex
sequence of revivals, fractional revivals, and super revivals
@26–30#. Specific attention has been given recently to creat-
ing in the laboratory packets with minimum uncertainty in an
angular coordinate. For example, experimental efforts are
presently underway to produce such packets orbiting the
nucleus of a Rydberg atom@31,32#. Localized packets with
noninteger angular-momentum expectation can certainly be
created, for example, by superposing angular-momentum
eigenstates with a gaussian weighting of coefficients with
noninteger mean value. However, our analysis shows that
any such packets cannot have minimum angular uncertainty.
Experiments performed to study the classical limit of quan-
tum mechanics via the behavior of minimum-uncertainty an-
gular packets must of necessity involve states with integer
angular momentum.

We thank R. Bluhm for discussion and a critical reading
of the manuscript.
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