39 research outputs found

    Contact metamorphic reactions and fluid–rock interactions related to magmatic sill intrusion in the Guaymas Basin

    Get PDF
    Igneous basaltic intrusions into young organic-rich sedimentary basins have a major impact not only on the carbon cycle but also on major and trace element transfers between deep and superficial geological reservoirs. The actively rifting Guaymas Basin in the Gulf of California, which was drilled by the International Ocean Discovery Program during Expedition 385, represents the nascent stage of an ocean characterized by siliceous organic-rich sediments (diatom ooze) intruded by a very dense network of basaltic sills. This study focuses on Site U1546 where the relatively high geothermal gradient (over 200 ∘C km−1) induces early diagenetic transformations in both pore waters and sediments, involving sulfide, carbonate and silica. Geochemical and mineralogical characterizations of the sediment at sill contacts indicate that sulfides and silica polymorphs are the main phases impacted by contact metamorphism, being evident by a transition from opal-CT to quartz and pyrite to pyrrhotite, respectively. Mass balance calculations have been used to estimate mass transfers in metamorphic aureoles. In the top contact aureole, predominantly isochemical metamorphism is reflected by the presence of authigenic quartz and disseminated 20–50 ”m sized pyrrhotite crystals, filling primary interstitial space, and partial dissolution of detrital feldspar grains. In the bottom contact aureole, quartz and euhedral pyrrhotite crystals occur, which are up to 4 times larger than those at the top contact. Significant metamorphism of sediments is observed in the lower contact aureole, where plagioclase recrystallizes around the detrital feldspars and locally euhedral pyroxenes are included in patches of carbonate cement; this suggests precipitation from carbon-rich fluids at temperatures (T) higher than 300 ∘C. The lower contact aureole also is more enriched in CaO, Na2O, Fe2O3 and trace elements (Cu, As, Zn, etc.) compared to the upper contact. Based on these petrological investigations, a conceptual model of magma–sediment–fluid interaction is proposed distinguishing top and bottom contact processes. Initial contact metamorphism due to sill emplacement is characterized by dehydration reactions in sediments and crystallization of new minerals. It was followed by carbonate precipitation from the released fluids. At a final stage, the temperature re-equilibrated with the geothermal gradient and the rocks were further altered by hydrothermal fluids.</p

    Evolution of ocean circulation and water masses in the Guaymas Basin (Gulf of California) during the last 31,000 years revealed by radiolarians and silicoflagellates in IODP expedition 385 sediment cores

    Get PDF
    The high-resolution analysis of radiolarians and silicoflagellates in sediments from Holes U1545A and U1549A drilled during IODP Expedition 385 in the Guaymas Basin, in the Gulf of California provides detailed insights into the evolution of ocean circulation and water masses, and its relation to Eastern Tropical Pacific Ocean climate conditions, over the past 31,000 cal years BP (based on AMS radiocarbon dates). In the pre-Last Glacial Maximum, the Guaymas Basin experienced alternating circulation patterns of California Current Water (CCW) and Gulf of California Water (GCW), with an extended presence of the Pacific Intermediate Water (PIW) owing to: amplified jet streams; southern movement of the California Current System (CCS) and the incursion of CCW into the gulf; and increased North Pacific Intermediate Water (NPIW) formation. The Last Glacial Maximum witnessed the incursion of CCW due to the stronger CCS. The dominance of the PIW indicates the expansion and formation of NPIW. The Heinrich-I event as manifested in the core record, displays two distinct patterns, one suggesting GCW-like dominance and the other, the occurrence of CCW. The Bþlling-Ållerþd interstadial featured the entry of Tropical Surface Water (TSW), GCW, and CCW, linked with the northward migration of the Intertropical Convergence Zone. In the Younger Dryas, CCW dominated, transitioning to GCW as colder climatic conditions and more intense CCS. The Holocene displayed alternating periods of TSW and GCW, with a modern monsoon regime from 7,600 to 1,000 cal years BP. From 1,000 cal years BP to the present the ITCZ shifted to the south

    NOXA as critical mediator for drug combinations in polychemotherapy

    Get PDF
    During polychemotherapy, cytotoxic drugs are given in combinations to enhance their anti-tumor effectiveness. For most drug combinations, underlying signaling mechanisms responsible for positive drug–drug interactions remain elusive. Here, we prove a decisive role for the Bcl-2 family member NOXA to mediate cell death by certain drug combinations, even if drugs were combined which acted independently from NOXA, when given alone. In proof-of-principle studies, betulinic acid, doxorubicin and vincristine induced cell death in a p53- and NOXA-independent pathway involving mitochondrial pore formation, release of cytochrome c and caspase activation. In contrast, when betulinic acid was combined with either doxorubicine or vincristine, cell death signaling changed considerably; the drug combinations clearly depended on both p53 and NOXA. Similarly and of high clinical relevance, in patient-derived childhood acute leukemia samples the drug combinations, but not the single drugs depended on p53 and NOXA, as shown by RNA interference studies in patient-derived cells. Our data emphasize that NOXA represents an important target molecule for combinations of drugs that alone do not target NOXA. NOXA might have a special role in regulating apoptosis sensitivity in the complex interplay of polychemotherapy. Deciphering the differences in signaling of single drugs and drug combinations might enable designing highly effective novel polychemotherapy regimens

    Nature and origin of magnetic lineations within Valdivia Bank: Ocean plateau formation by complex seafloor spreading

    Get PDF
    Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan-Gough hotspot at the Mid-Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi-linear polarity zones crossing the plateau and following expected MAR paleo-locations, implying formation by seafloor spreading over ∌4 Myr during the formation of anomalies C34n-C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading-type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano

    Expedition 376 summary

    Get PDF
    Volcanic arcs are the surface expression of magmatic systems that result from subduction of mostly oceanic lithosphere at convergent plate boundaries. Arcs with a submarine component include intraoceanic arcs and island arcs that span almost 22,000 km on Earth’s surface, and the vast majority of them are located in the Pacific region. Hydrothermal systems hosted by submarine arc volcanoes commonly contain a large component of magmatic fluid. This magmatic-hydrothermal signature, coupled with the shallow water depths of arc volcanoes and their high volatile contents, strongly influences the chemistry of the fluids and resulting mineralization and likely has important consequences for the biota associated with these systems. The high metal content and very acidic fluids in these hydrothermal systems are thought to be important analogs to numerous porphyry copper and epithermal gold deposits mined today on land. During International Ocean Discovery Program (IODP) Expedition 376 (5 May–5 July 2018), a series of five sites was drilled on Brothers volcano in the Kermadec arc. The expedition was designed to provide the missing link (i.e., the third dimension) in our understanding of hydrothermal activity and mineral deposit formation at submarine arc volcanoes and the relationship between the discharge of magmatic fluids and the deep biosphere. Brothers volcano hosts two active and distinct hydrothermal systems: one is seawater influenced and the other is affected by magmatic fluids (largely gases). In total, 222.4 m of volcaniclastics and lavas were recovered from the five sites drilled, which include Sites U1527 and U1530 in the Northwest (NW) Caldera seawater-influenced hydrothermal field; Sites U1528 and U1531 in the magmatic fluid-influenced hydrothermal fields of the Upper and Lower Cones, respectively; and Site U1529, located within an area of low crustal magnetization that marks the West (W) Caldera upflow zone on the caldera floor. Downhole logging and borehole fluid sampling were completed at two sites, and two tests of a prototype turbine-driven coring system (designed by the Center for Deep Earth Exploration [CDEX] at Japan Agency for Marine-Earth Science and Technology [JAMSTEC]) for drilling and coring hard rocks were conducted. Core recovered from all five sites consists of dacitic volcaniclastics and lava flows with only limited chemical variability relative to the overall range in composition of dacites in the Kermadec arc. Pervasive alteration with complex and variable mineral assemblages attest to a highly dynamic hydrothermal system. The upper parts of several drill holes at the NW Caldera hydrothermal field are characterized by secondary mineral assemblages of goethite + opal + zeolites that result from low-temperature (<150°C) reaction of rock with seawater. At depth, NW Caldera Site U1527 exhibits a higher temperature (~250°C) secondary mineral assemblage dominated by chlorite + quartz + illite + pyrite. An older mineral assemblage dominated by diaspore + quartz + pyrophyllite + rutile at the bottom of Hole U1530A is indicative of acidic fluids with temperatures of ~230°–320°C. In contrast, the alteration assemblage at Site U1528 on the Upper Cone is dominated by illite + natroalunite + pyrophyllite + quartz + opal + pyrite, which attests to high-temperature reaction of rocks with acid-sulfate fluids derived from degassed magmatic volatiles and the disproportionation of magmatic SO2. These intensely altered rocks exhibit extreme depletion of major cation oxides, such as MgO, K2O, CaO, MnO, and Na2O. Furthermore, very acidic (as low as pH 1.8), relatively hot (≀236°C) fluids collected at 160, 279, and 313 meters below seafloor in Hole U1528D have chemical compositions indicative of magmatic gas input. In addition, preliminary fluid inclusion data provide evidence for involvement of two distinct fluids: phase-separated (modified) seawater and a ~360°C hypersaline brine, which alters the volcanic rock and potentially transports metals in the system. The material and data recovered during Expedition 376 provide new stratigraphic, lithologic, and geochemical constraints on the development and evolution of Brothers volcano and its hydrothermal systems. Insights into the consequences of the different types of fluid–rock reactions for the microbiological ecosystem elucidated by drilling at Brothers volcano await shore-based studies

    DataSheet2_Evolution of ocean circulation and water masses in the Guaymas Basin (Gulf of California) during the last 31,000 years revealed by radiolarians and silicoflagellates in IODP expedition 385 sediment cores.xlsx

    No full text
    The high-resolution analysis of radiolarians and silicoflagellates in sediments from Holes U1545A and U1549A drilled during IODP Expedition 385 in the Guaymas Basin, in the Gulf of California provides detailed insights into the evolution of ocean circulation and water masses, and its relation to Eastern Tropical Pacific Ocean climate conditions, over the past 31,000 cal years BP (based on AMS radiocarbon dates). In the pre-Last Glacial Maximum, the Guaymas Basin experienced alternating circulation patterns of California Current Water (CCW) and Gulf of California Water (GCW), with an extended presence of the Pacific Intermediate Water (PIW) owing to: amplified jet streams; southern movement of the California Current System (CCS) and the incursion of CCW into the gulf; and increased North Pacific Intermediate Water (NPIW) formation. The Last Glacial Maximum witnessed the incursion of CCW due to the stronger CCS. The dominance of the PIW indicates the expansion and formation of NPIW. The Heinrich-I event as manifested in the core record, displays two distinct patterns, one suggesting GCW-like dominance and the other, the occurrence of CCW. The Bþlling-Ållerþd interstadial featured the entry of Tropical Surface Water (TSW), GCW, and CCW, linked with the northward migration of the Intertropical Convergence Zone. In the Younger Dryas, CCW dominated, transitioning to GCW as colder climatic conditions and more intense CCS. The Holocene displayed alternating periods of TSW and GCW, with a modern monsoon regime from 7,600 to 1,000 cal years BP. From 1,000 cal years BP to the present the ITCZ shifted to the south.</p

    DataSheet1_Evolution of ocean circulation and water masses in the Guaymas Basin (Gulf of California) during the last 31,000 years revealed by radiolarians and silicoflagellates in IODP expedition 385 sediment cores.docx

    No full text
    The high-resolution analysis of radiolarians and silicoflagellates in sediments from Holes U1545A and U1549A drilled during IODP Expedition 385 in the Guaymas Basin, in the Gulf of California provides detailed insights into the evolution of ocean circulation and water masses, and its relation to Eastern Tropical Pacific Ocean climate conditions, over the past 31,000 cal years BP (based on AMS radiocarbon dates). In the pre-Last Glacial Maximum, the Guaymas Basin experienced alternating circulation patterns of California Current Water (CCW) and Gulf of California Water (GCW), with an extended presence of the Pacific Intermediate Water (PIW) owing to: amplified jet streams; southern movement of the California Current System (CCS) and the incursion of CCW into the gulf; and increased North Pacific Intermediate Water (NPIW) formation. The Last Glacial Maximum witnessed the incursion of CCW due to the stronger CCS. The dominance of the PIW indicates the expansion and formation of NPIW. The Heinrich-I event as manifested in the core record, displays two distinct patterns, one suggesting GCW-like dominance and the other, the occurrence of CCW. The Bþlling-Ållerþd interstadial featured the entry of Tropical Surface Water (TSW), GCW, and CCW, linked with the northward migration of the Intertropical Convergence Zone. In the Younger Dryas, CCW dominated, transitioning to GCW as colder climatic conditions and more intense CCS. The Holocene displayed alternating periods of TSW and GCW, with a modern monsoon regime from 7,600 to 1,000 cal years BP. From 1,000 cal years BP to the present the ITCZ shifted to the south.</p
    corecore