68 research outputs found

    Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids

    Get PDF
    The so-called acpcPNA system bears a peptide backbone consisting of 4′-substituted proline units with (2′R,4′R) configuration in an alternating combination with (2S)-amino-cyclopentane-(1S)-carboxylic acids. acpcPNA forms exceptionally stable hybrids with complementary DNA. We demonstrate herein (i) strand displacements by single-stranded DNA from acpcPNA-DNA hybrids, and by acpcPNA strands from DNA duplexes, and (ii) strand invasions by acpcPNA into double-stranded DNA. These processes were studied in vitro using synthetic oligonucleotides and by means of our concept of wavelength-shifting fluorescent nucleic acid probes, including fluorescence lifetime measurements that allow quantifying energy transfer efficiencies. The strand displacements of preannealed 14mer acpcPNA-7mer DNA hybrids consecutively by 10mer and 14mer DNA strands occur with rather slow kinetics but yield high fluorescence color ratios (blue:yellow or blue:red), fluorescence intensity enhancements, and energy transfer efficiencies. Furthermore, 14mer acpcPNA strands are able to invade into 30mer double-stranded DNA, remarkably with quantitative efficiency in all studied cases. These processes can also be quantified by means of fluorescence. This remarkable behavior corroborates the extraordinary versatile properties of acpcPNA. In contrast to conventional PNA systems which require 3 or more equivalents PNA, only 1.5 equivalents acpcPNA are sufficient to get efficient double duplex invasion. Invasions also take place even in the presence of 250 mM NaCl which represents an ionic strength nearly twice as high as the physiological ion concentration. These remarkable results corroborate the extraordinary properties of acpcPNA, and thus acpcPNA represents an eligible tool for biological analytics and antigene applications. © The Royal Society of Chemistry 2015

    Synthesis and properties of novel nucleopeptides

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D192156 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Recyclable magnetite nanoparticle coated with cationic polymers for adsorption of DNA

    No full text
    <p>Magnetite nanoparticle (MNP) grafted with a cationic copolymer between poly(2-(<i>N,N</i>-diethylamino) ethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate)) for efficient and recyclable adsorption of 5’-fluorescein-tagged DNA (FAM-dT<sub>9</sub>) was prepared. MNP having highest degree of positive charge (+32.1 ± 1.9 mV) retained 100% adsorption of FAM-dT<sub>9</sub> during eight adsorption–separation–desorption cycles. The MNP having lower degree of positive charge showed a slight decrease in adsorption percentages (94–98% adsorption) after multiple recycling processes. This biocompatible hybrid material with charged surface and magnetic-responsive properties might be applicable for use as a nanosolid support for efficient and facile separation of various bioentities.</p

    Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: Structural basis of antifolate resistance

    No full text
    The nature of the interactions between Plasmodium falciparum dihydrofolate reductase (pfDHFR) and antimalarial antifolates, i.e., pyrimethamine (Pyr), cycloguanil (Cyc) and WR99210 including some of their analogues, was investigated by molecular modeling in conjunction with the determination of the inhibition constants (K-i). A three-dimensional structural model of pfDHFR was constructed using multiple sequence alignment and homology modeling procedures, followed by extensive molecular dynamics calculations. Mutations at amino acid residues 16 and 108 known to be associated with antifolate resistance were introduced into the structure, and the interactions of the inhibitors with the enzymes were assessed by docking and molecular dynamics for both wild-type and mutant DHFRs. The K-i values of a number of analogues tested support the validity of the model. A 'steric constraint' hypothesis is proposed to explain the structural basis of the antifolate resistance. (C) 2000 Elsevier Science Ltd. All rights reserved

    Mixed-sequence pyrrolidine-amide oligonucleotide mimics: Boc(Z) synthesis and DNA/RNA binding properties

    No full text
    Pyrrolidine-amide oligonucleotide mimics (POMs) exhibit promising properties for potential applications, including in vivo DNA and RNA targeting, diagnostics and bioanalysis. Before POMs can be evaluated in these applications it is first necessary to synthesise and establish the properties of fully modified oligomers, with biologically relevant mixed sequences. Accordingly, Boc-Z-protected thyminyl, adeninyl and cytosinyl POM monomers were prepared and used in the first successful solid phase synthesis of a mixed sequence POM, Lys-TCACAACTT-NH2. UV thermal denaturation studies revealed that the POM oligomer is capable of hybridising with sequence selectivity to both complementary parallel and antiparallel RNA and DNA strands. Whilst the duplex melting temperatures (Tm) were higher than the corresponding duplexes formed with isosequential PNA, DNA and RNA oligomers the rates of association/dissociation of the mixed sequence POM with DNA/RNA targets were noticeably slowe
    corecore