533 research outputs found

    Modified Gravity Away from a Λ\LambdaCDM Background

    Full text link
    Within the effective field theory approach to cosmic acceleration, the background expansion can be specified separately from the gravitational modifications. We explore the impact of modified gravity in a background different from a cosmological constant plus cold dark matter (Λ\LambdaCDM) on the stability and cosmological observables, including covariance between gravity and expansion parameters. In No Slip Gravity the more general background allows more gravitational freedom, including both positive and negative Planck mass running. We examine the effects on cosmic structure growth, as well as showing that a viable positive integrated Sachs-Wolfe effect crosscorrelation easily arises from this modified gravity theory. Using current data we constrain parameters with a Monte Carlo analysis, finding a maximum running αM0.03|\alpha_M|\lesssim 0.03. We provide the modified {\tt hi\_class} code publicly on GitHub, now enabling computation and inclusion of the redshift space distortion observable fσ8f\sigma_8 as well as the No Slip Gravity modifications.Comment: 14 pages, 13 figures. Matches published version in JCAP, LCDM discussion adde

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    Design, Development, and In-flight Testing of a Pointer/tracker for In-flight Experiments to Measure Aero-optical Effects over a Scaled Turret

    Get PDF
    We address the design, development, and testing of a pointer/tracker as a probe beam for the purpose of making high-speed, aero-optical measurements of the flow over a scaled beam director turret. The tracker uses retro-reflection of the probe beam off of a Reflexite annulus surrounding the turret. The constraints of the design required a near-total-commercial off the shelf system that could be quickly installed and removed in a rented aircraft. Baseline measurements of environmental vibrations are used to predict pointing performance; mitigation of line-of-sight jitter on the probe beam is achieved through passive isolation and the design of relay optics. Accommodation of ambient light is made with the use of wavelength filters and track algorithms. Postanalysis of measured data is compared to design estimates

    Effects of serum proteins on corrosion behavior of ISO 5832–9 alloy modified by titania coatings

    Get PDF
    Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol– gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L−1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serumproteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in proteincontaining solutions.The investigations were supported by the National Science Centre project No. N N507 501339. The authors gratefully acknowledge Dr. Janusz Sobczak and Dr. hab. Wojciech Lisowski from Institute of Physical Chemistry of PAS for XPS surface analyses

    X‐ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic mesozoic insect larva

    Get PDF
    Fossils sometimes show unusual morphological features absent in living organisms, making it difficult to reconstruct both their affinity and their function. We describe here a new lacewing larva, Ankyloleon caudatus gen. et sp.n. (Neuroptera) from the Cretaceous amber of Myanmar, characterized by an abdomen unique among insects, with ‘tail-like’ terminal segments bearing a ventral pair of vesicles. Phase-contrast X-ray microtomography reveals that these structures were dense and equipped with a median duct, suggesting that they were likely pygopods used for locomotion, holding the position through adhesive secretions. Our phylogenetic analyses, combining genomic and morphological data from both living and fossil lacewings, proved critical to placing Ankyloleon gen.n. on the lacewing tree of life as an early representative of the antlion clade, Myrmeleontiformia. These results corroborate the view that derived myrmeleontiform lacewings ‘experimented’ with unusual combinations of features and specializations during their evolutionary history, some of which are now lost

    Sympathetic Background in Tolkien’s Prose

    Get PDF
    Considering Tolkien’s poetic sensitivity and love of nature, it is no wonder that his fiction abounds with natural images and landscape descriptions. More often than not, these references to the environment seem to be in harmony with the events or the structure of the story. In other words, Tolkien seems to resort to this old universal literary device usually referred to as “sympathetic background” whereby nature mirrors, mimics or reacts to the characters’ deeds, emotions or state of mind. As a contribution to previous and current studies on nature in Middle-earth, this paper examines Tolkien’s art in portraying nature — whether it be the immediate environment (geography, plants, animals …) , or the workings of the elements (the forces constituting the weather) — in an attempt to unveil a subtext under the prism of “sympathetic background”.

    Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip

    Get PDF
    Vascular plants rely on differences of osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as M\"unch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems to occur via passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the nonlinear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of M\"unch transport, where phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with the hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies

    Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

    Get PDF
    The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.open4
    corecore