426 research outputs found

    Perforated tunnel exit regions and micro-pressure waves:geometrical influence

    Get PDF
    ACKNOWLEDGEMENTS The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant No. U1334201 and (iii) UK Engineering and Physical Sciences Research Council (Grant No. EP/G069441/1).Peer reviewedPublisher PD

    Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids

    Full text link
    To each linear code over a finite field we associate the matroid of its parity check matrix. We show to what extent one can determine the generalized Hamming weights of the code (or defined for a matroid in general) from various sets of Betti numbers of Stanley-Reisner rings of simplicial complexes associated to the matroid

    Temporal acceleration of a turbulent channel flow

    Get PDF
    We report new laboratory experiments of a flow accelerating from an initially turbulent state following the opening of a valve, together with large eddy simulations of the experiments and extended Stokes first problem solutions for the early stages of the flow. The results show that the transient flow closely resembles an accelerating laminar flow superimposed on the original steady turbulent flow. The primary consequence of the acceleration is the temporal growth of a boundary layer from the wall, gradually leading to a strong instability causing transition. This extends the findings of previous direct numerical simulations of transient flow following a near-step increase in flow rate. In this interpretation, the initial turbulence is not the primary characteristic of the resulting transient flow, but can be regarded as noise, the evolution of which is strongly influenced by the development of the boundary layer. We observe the spontaneous appearance of turbulent spots and discontinuities in the velocity signals in time and space, revealing rich detail of the transition process, including a striking contrast between streamwise and wall-normal fluctuating velocities

    Universal interpretations of vocal music

    Get PDF
    Despite the variability of music across cultures, some types of human songs share acoustic characteristics. For example, dance songs tend to be loud and rhythmic, and lullabies tend to be quiet and melodious. Human perceptual sensitivity to the behavioral contexts of songs, based on these musical features, suggests that basic properties of music are mutually intelligible, independent of linguistic or cultural content. Whether these effects reflect universal interpretations of vocal music, however, is unclear because prior studies focus almost exclusively on English-speaking participants, a group that is not representative of humans. Here, we report shared intuitions concerning the behavioral contexts of unfamiliar songs produced in unfamiliar languages, in participants living in Internet-connected industrialized societies (n = 5,516 native speakers of 28 languages) or smaller-scale societies with limited access to global media (n = 116 native speakers of three non-English languages). Participants listened to songs randomly selected from a representative sample of human vocal music, originally used in four behavioral contexts, and rated the degree to which they believed the song was used for each context. Listeners in both industrialized and smaller-scale societies inferred the contexts of dance songs, lullabies, and healing songs, but not love songs. Within and across cohorts, inferences were mutually consistent. Further, increased linguistic or geographical proximity between listeners and singers only minimally increased the accuracy of the inferences. These results demonstrate that the behavioral contexts of three common forms of music are mutually intelligible cross-culturally and imply that musical diversity, shaped by cultural evolution, is nonetheless grounded in some universal perceptual phenomena

    Unsteady skin friction experimentation in a large diameter pipe

    Get PDF
    Experimental data for the validation of theoretical models of unsteady skin friction are limited and are available only for a few low Reynolds number flow cases. There is a strong need for detailed measurements in flows at high Reynolds numbers. In addition, there is a need for a wider range of well-controlled acceleration/deceleration rates and detailed visualization of flow structure and profiles. To address these needs, a large-scale pipeline apparatus at Deltares, Delft, The Netherlands, has been used for unsteady skin friction experiments including acceleration, deceleration and acoustic resonance tests. The apparatus consists of a constant head tank, a horizontal 200 mm diameter pipe of changeable length (44 to 49 metres) and a control valve at the downstream end. In addition to standard instrumentation, two distinctive instruments have been used: hot-film wall shear stress sensors ("direct" measurement of wall shear stress) and a PIV set-up for measurement of unsteady flow profiles. This paper describes the test rig, the instrumentation layout and the test programme. Finally, some initial test results are presented and discussed

    Divergent LIN28-mRNA associations result in translational suppression upon the initiation of differentiation

    Get PDF
    LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications

    An Analysis of Functional Status in Multiple Sclerosis Patients after Progressive Non-Aerobic High-Intensity Maximal Effort Exercise (MEE)

    Get PDF
    Background: Multiple Sclerosis (MS) is a disease with a wide-ranging impact on functional status. MS patient function has been assessed using Multiple Sclerosis Functional Composite Score (MSFCS). The MSFCS includes the standardized scores (Z-score) of three functional tests: the Paced Auditory Serial Addition Test (PASAT-3”) for cognitive function, 9-Hole Peg Test (9-HPT) for upper extremity function, and timed 25-foot walk (25-TW) for lower extremity function. One of the most common symptoms experienced by MS patients is severe fatigue, often brought on suddenly by aerobic exercise. Non-aerobic maximal effort exercise (MEE) is thought to increase strength without increasing fatigue. The IsoPUMP¼ (Neuromuscular Engineering; Nashville, TN) is a stationary exercise device designed for patient use to safely perform MEE leg presses and whole body lunges using isometric and eccentric exercises. The progressive functional changes of the MS patients were tracked using the MSFCs at specific intervals during the study
    • 

    corecore