513 research outputs found
The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation
Forming method and characteristics of coiled spring in small coil diameter and with high rectangular ratio in winding wire cross section
This paper presents a new forming method of a coiled spring which is used as a forceps manipulator of a surgical robot. Joint parts of forceps manipulator are required to be “easy to bend and strong to twist”. This demand is fulfilled by using coiled springs with high rectangular ratio in winding wire cross section. However, the coiled springs are conventionally expensive as they are fabricated by machining. This study proposed a new and inexpensive forming method for fabrication of the coiled spring with high rectangular ratio in the wire cross section. In this method, the coiled spring with circular shape in the winding wire cross section is compressed in the coil axial direction by upsetting, and then the rectangle ratio of the wire becomes high. The coiled spring with a high rectangular ratio of 3 was obtained by the proposed method. In addition, a numerical analysis and an experiment were conducted for evaluation of the formed coiled springs in terms of tensile, torsional, and bending characteristics. The formed coiled springs were easy to bend and strong to twist from results. Moreover, the elastic limit of the formed coiled springs improved due to work hardening by upsetting
The removal of thermally aged films of triacylglycerides by surfactant solutions
Thermal ageing of triacylglycerides (TAG) at high temperatures produces films which resist removal using aqueous surfactant solutions. We used a mass loss method to investigate the removal of thermally aged TAG films from hard surfaces using aqueous solutions of surfactants of different charge types. It was found that cationic surfactants are most effective at high pH, whereas anionics are most effective at low pH and a non-ionic surfactant is most effective at intermediate pH. We showed that the TAG film removal process occurs in several stages. In the first ‘‘lag phase’’ no TAG removal occurs; the surfactant first partitions into the thermally aged film. In the second stage, the TAG film containing surfactant was removed by solubilisation into micelles in the aqueous solution. The effects of pH and surfactant charge on the TAG removal process correlate with the effects of these variables on the extent of surfactant partitioning to the TAG film and on the maximum extent of TAG solubilisation within the micelles. Additionally, we showed how the TAG removal is enhanced by the addition of amphiphilic additives such as alcohols which act as co-surfactants. The study demonstrates that aqueous surfactant solutions provide a viable and more benign alternative to current methods for the removal of thermally aged TAG films
Transport and Magnetic Properties of R1-xAxCoO3 (R=La, Pr and Nd; A=Ba, Sr and Ca)
Transport and magnetic measurements have been carried out on perovskite
Co-oxides R1-xAxCoO3 (R=La, Pr, and Nd; A=Ba, Sr and Ca; 0<x<0.5: All sets of
the R and A species except Nd1-xBaxCoO3 have been studied.). With increasing
the Sr- or Ba-concentration x, the system becomes metallic ferromagnet with
rather large magnetic moments. For R=Pr and Nd and A=Ca, the system approaches
the metal- insulator phase boundary but does not become metallic. The magnetic
moments of the Ca-doped systems measured with the magnetic field H=0.1 T are
much smaller than those of the Ba- and Sr-doped systems. The thermoelectric
powers of the Ba- and Sr-doped systems decrease from large positive values of
lightly doped samples to negative ones with increasing doping level, while
those of Ca-doped systems remain positive. These results can be understood by
considering the relationship between the average ionic radius of R1-xAx and the
energy difference between the low spin and intermediate spin states. We have
found the resistivity-anomaly in the measurements of Pr1-xCaxCoO3 under
pressure in the wide region of x, which indicates the existence of a phase
transition different from the one reported in the very restricted region of
x~0.5 at ambient pressure [Tsubouchi et al. Phys. Rev. B 66 (2002) 052418.]. No
indication of this kind of transition has been observed in other species of R.Comment: 9 pages, 8 figures. J. Phys. Soc. Jpn. 72 (2003) No.
Transport and Magnetic Studies on the Spin State Transition of Pr1-xCaxCoO3 up to High Pressure
Transport and magnetic measurements and structural and NMR studies have been
carried out on (Pr1-yR'y)1-xAxCoO3 {R'=(rare earth elements and Y); A=(Ca, Ba
and Sr)} at ambient pressure or under high pressure. The system exhibits a
phase transition from a nearly metallic to an insulating state with decreasing
temperature T, where the low spin (LS) state of Co3+ is suddenly stabilized.
For y=0, we have constructed a T-x phase diagram at various values of the
external pressure p. It shows that the (T, x) region of the low temperature
phase, which is confined to a very narrow region around x=0.5 at ambient
pressure, expands as p increases, suggesting that the transition is not due to
an order-disorder type one. For the occurrence of the transition, both the Pr
and Ca atoms seem to be necessary. The intimate relationship between the local
structure around the Co ions and the electronic (or spin) state of Co3+ ions is
discussed: For the smaller unit cell volume or the smaller volume of the CoO6
octahedra and for the larger tilting angle of the octahedra, the temperature of
the transition becomes higher. The role of the carriers introduced by the
doping of the A atoms, is also discussed. By analyzing the data of 59Co-NMR
spectra and magnetic susceptibilities of Pr1-xCaxCoO3 the energy separations
among the different spin states of Co3+ and Co4+ are roughly estimated.Comment: 15 pages, 15 figures, 2 tables, submitted to J. Phys. Soc. Jp
Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1
A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis
Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety
<p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) stimulates hepatocyte proliferation, and also acts as an anti-apoptotic factor. Therefore, HGF is a potential therapeutic agent for treatment of fatal liver diseases. We performed a translational medicine protocol with recombinant human HGF (rh-HGF), including a phase I/II study of patients with fulminant hepatitis (FH) or late-onset hepatic failure (LOHF), in order to examine the safety, pharmacokinetics, and clinical efficacy of this molecule.</p> <p>Methods</p> <p>Potential adverse effects identified through preclinical safety tests with rh-HGF include a decrease in blood pressure (BP) and an increase in urinary excretion of albumin. Therefore, we further investigated the effect of rh-HGF on circulatory status and renal toxicity in preclinical animal studies. In a clinical trial, 20 patients with FH or LOHF were evaluated for participation in this clinical trial, and four patients were enrolled. Subjects received rh-HGF (0.6 mg/m<sup>2</sup>/day) intravenously for 12 to 14 days.</p> <p>Results</p> <p>We established an infusion method to avoid rapid BP reduction in miniature swine, and confirmed reversibility of renal toxicity in rats. Although administration of rh-HGF moderately decreased BP in the participating subjects, this BP reduction did not require cessation of rh-HGF or any vasopressor therapy; BP returned to resting levels after the completion of rh-HGF infusion. Repeated doses of rh-HGF did not induce renal toxicity, and severe adverse events were not observed. Two patients survived, however, there was no evidence that rh-HGF was effective for the treatment of FH or LOHF.</p> <p>Conclusions</p> <p>Intravenous rh-HGF at a dose of 0.6 mg/m<sup>2 </sup>was well tolerated in patients with FH or LOHF; therefore, it is desirable to conduct further investigations to determine the efficacy of rh-HGF at an increased dose.</p
- …