10,192 research outputs found

    Detection of t(7;12)(q36;p13) in paediatric leukaemia using dual colour fluorescence in situ hybridisation

    Get PDF
    The identification of chromosomal rearrangements is of utmost importance for the diagnosis and classification of specific leukaemia subtypes and therefore has an impact on therapy choices in individual cases. The t(7;12)(q36;p13) is a cryptic rearrangement that is difficult to recognise using conventional cytogenetic methods and is often undetected by reverse transcription polymerase chain reaction due to the absence of a fusion transcript in many cases. Here we present a reliable and easy to use dual colour fluorescence in situ hybridisation assay for the detection of the t(7;12)(q36;p13) rearrangement. A comparison with previous similar work is given and advantages and limitations of this novel approach are discussed

    Interacting Fermi Gases in Disordered One-Dimensional Lattices

    Get PDF
    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation.Comment: 7 pages, 4 figures, submitte

    How large are present-day heat flux variations across the surface of Mars?

    Get PDF
    ©2016. American Geophysical UnionThe first in situ Martian heat flux measurement to be carried out by the InSight Discovery‐class mission will provide an important baseline to constrain the present‐day heat budget of the planet and, in turn, the thermochemical evolution of its interior. In this study, we estimate the magnitude of surface heat flux heterogeneities in order to assess how the heat flux at the InSight landing site relates to the average heat flux of Mars. To this end, we model the thermal evolution of Mars in a 3‐D spherical geometry and investigate the resulting surface spatial variations of heat flux at the present day. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data and with radiogenic heat sources as obtained from gamma ray measurements of the surface. We test several mantle parameters and show that the present‐day surface heat flux pattern is dominated by the imposed crustal structure. The largest surface heat flux peak‐to peak variations lie between 17.2 and 49.9 mW m−2, with the highest values being associated with the occurrence of prominent mantle plumes. However, strong spatial variations introduced by such plumes remain narrowly confined to a few geographical regions and are unlikely to bias the InSight heat flux measurement. We estimated that the average surface heat flux varies between 23.2 and 27.3 mW m−2, while at the InSight location it lies between 18.8 and 24.2 mW m−2. In most models, elastic lithosphere thickness values exceed 250 km at the north pole, while the south pole values lie well above 110 km

    Phase separation in a boson-fermion mixture of Lithium atoms

    Full text link
    We use a semiclassical three-fluid model to analyze the conditions for spatial phase separation in a mixture of fermionic Li-6 and a (stable) Bose-Einstein condensate of Li-7 atoms under cylindrical harmonic confinement, both at zero and finite temperature. We show that with the parameters of the Paris experiment [F. Schrek et al., Phys. Rev. Lett. 87 080403 (2001)] an increase of the boson-fermion scattering length by a factor five would be sufficient to enter the phase-separated regime. We give examples of configurations for the density profiles in phase separation and estimate that the transition should persist at temperatures typical of current experiments. For higher values of the boson-fermion coupling we also find a new phase separation between the fermions and the bosonic thermal cloud at finite temperature.Comment: 8 pages, 4 figures, new version of Fig. 4 and typos correcte

    The habitability of a stagnant-lid Earth

    Full text link
    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2_2O and CO2_2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2_2O and CO2_2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2_2O and CO2_2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2_2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2_2, can vary in a non-monotonic way depending on the extent of the outgassed H2_2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability

    Emergence of Wigner molecules in one-dimensional systems of repulsive fermions under harmonic confinement

    Full text link
    A Bethe-Ansatz spin-density functional approach is developed to evaluate the ground-state density profile in a system of repulsively interacting spin-1/2 fermions inside a quasi-one-dimensional harmonic well. The approach allows for the formation of antiferromagnetic quasi-order with increasing coupling strength and reproduces with high accuracy the exact solution that is available for the two-fermion system.Comment: 3 pages, 2 figures, submitte

    Energy relaxation of exciton-polariton condensates in quasi-1D microcavities

    Full text link
    We present a time-resolved study of energy relaxation and trapping dynamics of polariton condensates in a semiconductor microcavity ridge. The combination of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity gives rise to profuse quantum phenomena where the repulsive potentials created by the lasers allow the modulation and control of the polariton flow. We analyze in detail the dependence of the dynamics on the power of both lasers and determine the optimum conditions for realizing an all-optical polariton condensate transistor switch. The experimental results are interpreted in the light of simulations based on a generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.Comment: 15 pages, 20 figure

    Flutter Instability in an Internal Flow Energy Harvester

    Get PDF
    Vibration-based flow energy harvesting enables robust, in-situ energy extraction for low-power applications, such as distributed sensor networks. Fluid-structure instabilities dictate a harvester's viability since the structural response to the flow determines its power output. Previous work on a flextensional-based flow energy harvester demonstrated that an elastic member within a converging-diverging channel is susceptible to the aeroelastic flutter. This work explores the mechanism driving flutter through experiments and simulations. A model is then developed based on channel flow-rate modulation and considering the effects of both normal and spanwise flow confinement on the instability. Linear stability analysis of the model replicates flutter onset, critical frequency, and mode shapes observed in experiments. The model suggests that flow modulation through the channel throat is the principal mechanism for the fluid-induced vibration. The generalized model presented can serve as the foundation of design parameter exploration for energy harvesters, perhaps leading to more powerful devices in the future, but also to other similar flow geometries where the flutter instability arises in an elastic member within a narrow flow passage

    Dynamics of a polariton condensate transistor switch

    Full text link
    We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation towards a collector, at the ridge edge, is controlled by a second weak pulse (gate), located between the source and the collector. The experimental results are interpreted in the light of simulations based on the generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.Comment: 4 pages, 2 figure

    Present-day Mars' seismicity predicted from 3-D thermal evolution models of interior dynamics

    Get PDF
    ©2018. American Geophysical UnionThe Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present‐day amount and distribution of seismicity using 3‐D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end‐member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm
    corecore