191 research outputs found

    Astronomical seeing and ground-layer turbulence in the Canadian High Arctic

    Full text link
    We report results of a two-year campaign of measurements, during arctic winter darkness, of optical turbulence in the atmospheric boundary-layer above the Polar Environment Atmospheric Laboratory in northern Ellesmere Island (latitude +80 deg N). The data reveal that the ground-layer turbulence in the Arctic is often quite weak, even at the comparatively-low 610 m altitude of this site. The median and 25th percentile ground-layer seeing, at a height of 20 m, are found to be 0.57 and 0.25 arcsec, respectively. When combined with a free-atmosphere component of 0.30 arcsec, the median and 25th percentile total seeing for this height is 0.68 and 0.42 arcsec respectively. The median total seeing from a height of 7 m is estimated to be 0.81 arcsec. These values are comparable to those found at the best high-altitude astronomical sites

    Clear sky fraction above Indonesia: an analysis for astronomical site selection

    Full text link
    We report a study of cloud cover over Indonesia based on meteorological satellite data, spanning over the past 15 years (from 1996 to 2010) in order to be able to select a new astronomical site capable to host a multi-wavelength astronomical observatory. High spatial resolution of meteorological satellite data acquired from {\it Geostationary Meteorological Satellite 5} ({\it GMS 5}), {\it Geostationary Operational Environmental Satellite 9} ({\it GOES 9}), and {\it Multi-functional Transport Satellite-1R} ({\it MTSAT-1R}) are used to derive yearly average clear fractions over the regions of Indonesia. This parameter is determined from temperature measurement of the IR3 channel (water vapor, 6.7 ÎĽ\mum) for high altitude clouds (cirrus) and from the IR1 channel (10.7 ÎĽ\mum) for lower altitude clouds. Accordingly, an algorithm is developed to detect the corresponding clouds. The results of this study are then adopted to select the best possible sites in Indonesia to be analysed further by performing in situ measurements planned for the coming years. The results suggest that regions of East Nusa Tenggara, located in south-eastern part of Indonesia, are the most promising candidates for such an astronomical site. Yearly clear sky fraction of this regions may reach better than 70 per cent with an uncertainty of 10 per cent.Comment: 15 pages, 13 figures, and 4 table

    FACT - Long-term stability and observations during strong Moon light

    Full text link
    The First G-APD Cherenkov Telescope (FACT) is the first Cherenkov telescope equipped with a camera made of silicon photon detectors (G-APD aka. SiPM). Since October 2011, it is regularly taking data on the Canary Island of La Palma. G-APDs are ideal detectors for Cherenkov telescopes as they are robust and stable. Furthermore, the insensitivity of G-APDs towards strong ambient light allows to conduct observations during bright Moon and twilight. This gain in observation time is essential for the long-term monitoring of bright TeV blazars. During the commissioning phase, hundreds of hours of data (including data from the the Crab Nebula) were taken in order to understand the performance and sensitivity of the instrument. The data cover a wide range of observation conditions including different weather conditions, different zenith angles and different light conditions (ranging from dark night to direct full Moon). We use a new parmetrisation of the Moon light background to enhance our scheduling and to monitor the atmosphere. With the data from 1.5 years, the long-term stability and the performance of the camera during Moon light is studied and compared to that achieved with photomultiplier tubes so far.Comment: 3 pages, 3 figures, FACT Contribution to the 33rd International Cosmic Ray Conference (ICRC), Rio de Janeir

    FACT - Threshold prediction for higher duty cycle and improved scheduling

    Full text link
    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. Being operated during different light-conditions, the threshold settings of a Cherenkov telescope have to be adapted to feature the lowest possible threshold but also an efficient suppression of triggers from night-sky background photons. Usually this threshold is set either by experience or a mini-ratescan. Since the measured current through the sensors is directly correlated with the noise level, the current can be used to set the best threshold at any time. Due to the correlation between the physical threshold and the final energy threshold, the current can also be used as a measure for the energy threshold of any observation. This presentation introduces a method which uses the properties of the moon and the source position to predict the currents and the corresponding energy threshold for every upcoming observation allowing to adapt the observation schedule accordingly

    FACT - Long-term Monitoring of Bright TeV-Blazars

    Get PDF
    Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated successfully on the Canary Island of La Palma. Apart from the proof of principle for the use of G-APDs in Cherenkov telescopes, the major goal of the project is the dedicated long-term monitoring of a small sample of bright TeV blazars. The unique properties of G-APDs permit stable observations also during strong moon light. Thus a superior sampling density is provided on time scales at which the blazar variability amplitudes are expected to be largest, as exemplified by the spectacular variations of Mrk 501 observed in June 2012. While still in commissioning, FACT monitored bright blazars like Mrk 421 and Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk 501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013

    High Precision Astrometry with MICADO at the European Extremely Large Telescope

    Full text link
    In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astronomical (reference source selection). We find that there are several phenomena having impact on ~100 micro-arcsec scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 micro-arcsec or better - with 40 micro-arcsec/year in proper motions corresponding to ~20 km/s at 100 kpc distance - can be achieved in one epoch of actual observationsComment: 15 pages, 9 figures, 3 tables. Accepted by MNRA

    FACT - How stable are the silicon photon detectors?

    Full text link
    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. Since the properties of G-APDs depend on auxiliary parameters like temperature, a feedback system adapting the applied voltage accordingly is mandatory. In this presentation, the feedback system, developed and in operation for FACT, is presented. Using the extraction of a single photon-equivalent (pe) spectrum as a reference, it can be proven that the sensors can be operated with very high precision. The extraction of the single-pe, its spectrum up to 10\,pe, its properties and their precision, as well as their long-term behavior during operation are discussed. As a by product a single pulse template is obtained. It is shown that with the presented method, an additional external calibration device can be omitted. The presented method is essential for the application of G-APDs in future projects in Cherenkov astronomy and is supposed to result in a more stable and precise operation than possible with photo-multiplier tubes

    Rest-Frame R-band Lightcurve of a z~1.3 Supernova Obtained with Keck Laser Adaptive Optics

    Get PDF
    We present Keck diffraction limited H-band photometry of a z~1.3 Type Ia supernova (SN) candidate, first identified in a Hubble Space Telescope (HST) search for SNe in massive high redshift galaxy clusters. The adaptive optics (AO) data were obtained with the Laser Guide Star facility during four observing runs from September to November 2005. In the analysis of data from the observing run nearest to maximum SN brightness, the SN was found to have a magnitude H=23.9 +/- 0.14 (Vega). We present the H-band (approximately rest-frame R) light curve and provide a detailed analysis of the AO photometric uncertainties. By constraining the aperture correction with a nearby (4" separation) star we achieve 0.14 magnitude photometric precision, despite the spatially varying AO PSF.Comment: 11 pages, 8 figures, Accepted for Publication in AJ Updated the citations, fixed typo

    FACT - Monitoring Blazars at Very High Energies

    Full text link
    The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of La Palma in October 2011 as a proof of principle for silicon based photosensors in Cherenkov Astronomy. The scientific goal of the project is to study the variability of active galatic nuclei (AGN) at TeV energies. Observing a small sample of TeV blazars whenever possible, an unbiased data sample is collected. This allows to study the variability of the selected objects on timescales from hours to years. Results from the first three years of monitoring will be presented. To provide quick flare alerts to the community and trigger multi-wavelength observations, a quick look analysis has been installed on-site providing results publicly online within the same night. In summer 2014, several flare alerts were issued. Results of the quick look analysis are summarized.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
    • …
    corecore