62 research outputs found

    Statistical Mechanics for Unstable States in Gel'fand Triplets and Investigations of Parabolic Potential Barriers

    Full text link
    Free energies and other thermodynamical quantities are investigated in canonical and grand canonical ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the systems containing parabolic potential barriers (PPB's). The entropy and energy productions from PPB systems are studied. An equilibrium for a chemical process described by reactions A+CBAC+BA+CB\rightleftarrows AC+B is also discussed.Comment: 14 pages, AmS-LaTeX, no figur

    Quantum Mechanics of Damped Systems II. Damping and Parabolic Potential Barrier

    Get PDF
    We investigate the resonant states for the parabolic potential barrier known also as inverted or reversed oscillator. They correspond to the poles of meromorphic continuation of the resolvent operator to the complex energy plane. As a byproduct we establish an interesting relation between parabolic cylinder functions (representing energy eigenfunctions of our system) and a class of Gel'fand distributions used in our recent paper.Comment: 14 page

    Stationary Flows of the Parabolic Potential Barrier in Two Dimensions

    Full text link
    In the two-dimensional isotropic parabolic potential barrier V(x,y)=V0mγ2(x2+y2)/2V(x, y)=V_0 -m\gamma^2 (x^2+y^2)/2, though it is a model of an unstable system in quantum mechanics, we can obtain the stationary states corresponding to the real energy eigenvalue V0V_0. Further, they are infinitely degenerate. For the first few eigenstates, we will find the stationary flows round a right angle that are expressed by the complex velocity potentials W=±γz2/2W=\pm\gamma z^2/2.Comment: 12 pages, AmS-LaTeX, 4 figure

    On the upper bound of the electronic kinetic energy in terms of density functionals

    Full text link
    We propose a simple density functional expression for the upper bound of the kinetic energy for electronic systems. Such a functional is valid in the limit of slowly varying density, its validity outside this regime is discussed by making a comparison with upper bounds obtained in previous work. The advantages of the functional proposed for applications to realistic systems is briefly discussed.Comment: 10 pages, no figure

    Vortices and chirality of magnetostatic modes in quasi-2D ferrite disk particles

    Full text link
    In this paper we show that the vortex states can be created not only in magnetically soft "small" (with the dipolar and exchange energy competition) cylindrical dots, but also in magnetically saturated "big" (when the exchange is neglected) cylindrical dots. A property associated with a vortex structure becomes evident from an analysis of confinement phenomena of magnetic oscillations in a ferrite disk with a dominating role of magnetic-dipolar (non-exchange-interaction) spectra. In this case the scalar (magnetostatic-potential) wave functions may have a phase singularity in a center of a dot. A non-zero azimuth component of the flow velocity demonstrates the vortex structure. The vortices are guaranteed by the chiral edge states of magnetic-dipolar modes in a quasi-2D ferrite disk
    corecore