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Institute of Physics, Nicolaus Copernicus University

ul. Grudzia̧dzka 5/7, 87-100 Toruń, Poland

Abstract

We investigate the resonant states for the parabolic potential barrier known also as
inverted or reversed oscillator. They correspond to the poles of meromorphic continuation
of the resolvent operator to the complex energy plane. As a byproduct we establish an
interesting relation between parabolic cylinder functions (representing energy eigenfunc-
tions of our system) and a class of Gel’fand distributions used in our recent paper.
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1 Introduction

In a recent paper [1] we have investigated a quantization of the simple damped system1

u̇ = −γu . (1.1)

To quantize this system we double the number of degrees of freedom, i.e. together with (1.1)
we consider v̇ = +γv. The enlarged system is a Hamiltonian one and its quantization leads
to the following quantum Hamiltonian:

Ĥ = −γ
2
(ûv̂ + v̂û) . (1.2)

We showed that the above system displays two families of generalized eigenvectors f±n corre-
sponding to purely imaginary eigenvalues Ĥf±n = ±Enf

±
n . These eigenvectors are interpreted

as resonant states — they correspond to the poles of energy eigenfunctions when continued to
the complex energy plane. It turns out that resonant states are responsible for the irreversible
behavior. We showed that there are two dense subspaces Φ± ∈ L2(R) such that restriction

of the unitary group U(t) = e−iĤt to Φ± does no longer define a group but gives rise to two
semigroups: U−(t) = U(t)|Φ−

defined for t ≥ 0 and U+(t) = U(t)|Φ+
defined for t ≤ 0. In

1We slightly change the notation: the coordinates (x, p) used in [1] are replaced by (u, v) in the present
paper.
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the framework of Gel’fand triplets (see e.g. [2]) it means that the quantum version of the
damped system (1.1) corresponds to the Gel’fand triplet:

Φ− ⊂ L2(R) ⊂ Φ′
− , (1.3)

together with the Hamiltonian Ĥ|Φ−
. This system serves as a simple example of Arno Bohm

theory of resonances [3] (see also [4, 5]) and illustrates mathematical results of [6].
In the present paper we continue to study this system but in a different representation.

Let us observe that performing the linear canonical transformation (u, v) −→ (x, p):

u =
γx− p√

2γ
, v =

γx+ p√
2γ

, (1.4)

one obtains for the Hamiltonian

Ĥ =
1

2
(p̂2 − γ2x̂2) . (1.5)

It represents the parabolic potential barrier V (x) = −γ2x2/2 and it was studied by several
authors in various contexts [7, 8, 9, 10, 11, 12, 13]. It is well known that this system gives
rise to the generalized complex eigenvalues — the physical reason for that is the potential
unbounded from below. We find the corresponding energy eigenstates for (1.5). They are
given in terms of parabolic cylinder functions Dν(x). Using the Gel’fand-Maurin spectral
decomposition we find the resolvent operator R(z, Ĥ) = (Ĥ − z)−1 and relate its poles to
the resonant states. As a byproduct we established a deep relation between the Gel’fand
distributions uλ

± [14, 15] (used in [1]) and parabolic cylinder functions Dν(x). The details are
included in the Appendix.

2 Inverted oscillator and complex eigenvalues

Let us note that Ĥ defined in (1.5) corresponds to the Hamiltonian of the harmonic oscillator
with purely imaginary frequency ω = ±iγ (in the literature it is also called an inverted or
reversed oscillator). The connection with a harmonic oscillator may be established by the
following scaling operator [16]:

V̂λ := exp

(
λ

2
(x̂p̂+ p̂x̂)

)
, (2.1)

with λ ∈ R. Using commutation relation [x̂, p̂] = i, this operator may be rewritten as follows

V̂λ = e−i λ
2 eλx̂p̂ = e−i λ

2 e−iλx∂x , (2.2)

and therefore it defines a complex dilation, i.e. the action of V̂λ on a function ϕ = ϕ(x) is
given by

V̂λ ϕ(x) = e−i λ
2 ϕ(e−iλ x) . (2.3)

In particular one easily finds:

V̂λ x̂ V̂
−1
λ = e−iλx̂ , V̂λ p̂ V̂

−1
λ = eiλp̂ , (2.4)
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and hence
V̂λ (p̂2 − γ2x̂2) V̂ −1

λ = e2iλ (p̂2 − e−4iλγ2x̂2) . (2.5)

Therefore, for e4iλ = −1, i.e. λ = ±π/4, one has

V̂±π/4 Ĥ V̂ −1
±π/4 = ±iĤho , (2.6)

where

Ĥho =
1

2
(p̂2 + γ2x̂2) , (2.7)

stands for the oscillator Hamiltonian. In particular if Eho
n = γ(n+ 1

2) is an oscillator spectrum

Ĥhoψ
ho
n = Eho

n ψho
n , (2.8)

then
Ĥf±n = ±Enf±n , (2.9)

with

En = iEho
n = iγ

(
n+

1

2

)
, (2.10)

and
f±n (x) = V̂∓π/4 ψ

ho
n (x) = e±i π

8 ψho
n (e±i π

4 x) . (2.11)

Now, recalling that (see e.g. [17])

ψho
n (x) = Nn e

− γ

2
x2

Hn(
√
γx) , (2.12)

where Hn stands for the n-th Hermite polynomial and the normalization constant

Nn =

( √
γ

2nn!
√
π

) 1

2

, (2.13)

one obtains the following formulae for the generalized eigenvectors of Ĥ:

f±n (x) = N±
n e∓i γ

2
x2

Hn(
√

±iγx) , (2.14)

with

N±
n = e±i π

8 Nn =

( √±iγ
2nn!

√
π

) 1

2

. (2.15)

Clearly, f±n are not elements from L2(R) but they do belong to the dual of the Schwartz space
S(Rx)

′, i.e. they are tempered distributions.

Proposition 1 Two families of generalized eigenvectors f±n satisfy the following properties:

1. they are conjugated to each other:

f+n (x) = f−n (x) , (2.16)
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2. they are orthonormal

〈 f±n |f∓m 〉 = δnm , (2.17)

3. they are complete
∞∑

n=0

f±n (x) f∓n (x′) = δ(x− x′) . (2.18)

The proof follows immediately from orthonormality and completness of oscillator eigenfunc-
tions ψho

n . Formula (2.16) implies that f+n and f−n are related by the time reversal operator
T: Tψ := ψ. Recall [1] that in u-representation T is unitary (it is defined by the Fourier
transformation), whereas in x-representation it is antiunitary.

3 Change of representation

It should be clear that there exists relation between generalized eigenvectors f±n (x) and f±n (u)
found in [1]:

f+
n (u) ∼ un , f−n (u) ∼ δ(n)(u) . (3.1)

They define the same eigenvectors | ± n 〉 but in different representations:

f±n (x) = 〈x| ± n 〉 , f±n (u) = 〈u| ± n 〉 .

To find this relation let us observe that the canonical transformation (1.4) is generated by
the following generating function

S(x, u) =
γ

2
x2 −

√
2γxu+

1

2
u2 , (3.2)

that is,

p =
∂S

∂x
, v = −∂S

∂u
. (3.3)

Let us define a unitary operator

U : L2(Ru) −→ L2(Rx) ,

by

f −→ (Uf)(x) = C

∫ ∞

−∞
f(u)eiS(x,u) du , (3.4)

where the constant ‘C’ is determined by

|C|2
∫ ∞

−∞
eiS(x,u) e−iS(x′,u) du = δ(x− x′) . (3.5)

It implies C = eiα C0, where α is an arbitrary phase and

C0 =
( γ

2π2

) 1

4

, (3.6)

In the next section it would be clear that a natural choice for the phase is α = −π/8. Clearly,
U may be extended to act on S(Ru)′. It is easy to show that

U(S(Ru)′) ⊂ S(Rx)′ . (3.7)
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Proposition 2 The generalized eigenvectors f±n ∈ S(Rx)′ and f±n ∈ S(Ru)′ are related by:

f±n = U f±n . (3.8)

Proof. Let us show that f+n = Uf+
n , that is

f+n (x) ∼
∫
uneiS(x,u)du . (3.9)

Using the definition of S(x, u) one has
∫
uneiS(x,u)du =

(
−i

√
2πγ

)−n
eiγ

x2

2
dn

dxn

∫
eiu

2/2−i
√

2γxudu

=
√
−2πi

(
−i

√
2πγ

)−n
e−iγ x2

2

(
eiγx2 dn

dxn
e−iγx2

)
. (3.10)

Now, due to the well known formula for the Hermite polynomials

eiz
2 dn

dzn
e−iz2

= (−1)nHn(z) , (3.11)

one obtains ∫
uneiS(x,u)du =

√
−2πi

(
i

2

)−n
2

e−iγ x2

2 Hn(
√
iγx) ∼ f+n (x) . (3.12)

To prove that f−n = Uf−n , let us note that2

f−n (x) = f+n (x) ∼
∫
une−iS(x,u)du . (3.13)

Now, taking into account that f+
n and f−n are related by the Fourier transformation

un =
√

2π(−i)nF−1[δ(n)(k)](u) , (3.14)

one obtains
∫
une−iS(x,u)du =

√
2π(−i)n

∫
δ(n)(u)F−1

[
e−iS

]
(u) du . (3.15)

Finally,

F−1
[
e−iS

]
(u) =

1√
2π

∫
e−iku e−iS(x,k)dk =

√
−i eiS(x,u) , (3.16)

and hence

f−n (x) ∼
∫
δ(n)(u)eiS(x,u)du , (3.17)

which ends the proof. 2

2It turns out that a function

S̃(x, v) = −S(x, v) = −
γ

2
x2 +

√
2γxv −

1

2
v2 ,

serves as a generating function for the canonical transformation (1.4):

p =
∂S̃

∂x
, u = −

∂S̃

∂v
.
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4 Energy eigenstates

The spectrum of the self-adjoint operator (1.2) reads σ(Ĥ) = (−∞,∞) and the corresponding
energy eigenstates (in u-representation) are given by (cf. section 6 in [1]):

ψE
±(u) =

1√
2πγ

u
−(iE/γ+1/2)
± , (4.1)

with E ∈ R. For the basic properties of the tempered distributions uλ
± ∈ S(Ru)′ we refer

the reader to [14, 15] (see also the Appendix in [1]). Now, using (x, p) coordinates the
corresponding eigenvalue problem 1

2(p̂2 − γ2x̂2)χE = EχE reads

∂2
xχ

E(x) + (γ2x2 + 2E)χE(x) = 0 . (4.2)

Introducing a new variable
z =

√
2iγ x , (4.3)

the above equation may be rewritten as follows

∂2
zχ

E +

(
ν +

1

2
− z2

4

)
χE = 0 , (4.4)

with

ν = −
(
i
E

γ
+

1

2

)
, (4.5)

which is the defining equation for the parabolic cylinder functions [18, 19, 20]. Its solution
χE(z) is a linear combination of Dν(z), Dν(−z), D−ν−1(iz) and D−ν−1(−iz).3 On the other
hand the energy eigenstates in x-representation χE(x) may be obtained by applying the
operator U defined in (3.4) to the corresponding eigenstates in u-representation ψE

±(u):

χE
±(x) = (UψE

±)(x) = C

∫ ∞

−∞
ψE
±(u) eiS(x,u) du . (4.6)

Hence

χE
+(x) =

C√
2πγ

ei
γ

2
x2

∫ ∞

0
uν e−i

√
2γxu+iu2/2 du

=
C√
2πγ

√
i
ν+1

e−
y2

4

∫ ∞

0
ξν eyξ−ξ2/2 dξ , (4.7)

with y =
√−2iγ x, and using an integral representation for Dp(y) (formula 9.241(2) in [18]):4

Dp(y) =
e−

y2

4

Γ(−p)

∫ ∞

0
ξ−p−1 e−yξ−ξ2/2 dξ , (4.8)

3These four functions are linearly dependent. For the linear relation see e.g. formula 9.248 in [18].
4The validity of this formula is restricted in [18] for Re p < 0. However, as we shall show (see the proof of

Proposition 4), it is valid for all p ∈ C.
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one finds

χE
+(x) =

C0√
2πγ

√
i
ν+ 1

2 Γ(ν + 1)D−ν−1(−
√

−2iγx) , (4.9)

with ν given in (4.5). Similarly, using an obvious relation (−u)λ+ = uλ
−, one obtains:

χE
−(x) =

C0√
2πγ

√
i

ν+ 1

2 Γ(ν + 1)D−ν−1(
√

−2iγx) , (4.10)

that is, χE
−(x) = χE

+(−x). Actually, instead of χE
± one may use energy eigenstates with the

definite parity:

χE
even =

1√
2

(
χE

+ + χE
−
)
, (4.11)

χE
odd =

1√
2

(
χE

+ − χE
−
)
, (4.12)

that is,
PχE

even = χE
even , PχE

odd = −χE
odd , (4.13)

where P stands for the parity operator.

Proposition 3 Energy eigenstates χE
± satisfy:

∫ ∞

−∞
χE
±(x)χE′

± (x) dx = δ(E − E′) , (4.14)

and ∫ ∞

−∞
χE
±(x)χE

±(x′) dE = δ(x − x′) . (4.15)

The proof follows immediately from the analogous properties satisfied by energy eigenstates
ψE
± in u-representation [1].

In [1] we have used also another generalized basis F [ψ−E
± ](u). Now, we find its U image

in S(Rx)
′. Recalling the Fourier transformation of xλ

± (see [14] and Appendix in [1]):

F [xλ
±](u) =

±i√
2π

e±iλ π
2 Γ(λ+ 1)(u+ i0)−λ−1 . (4.16)

one has

F [ψ−E
+ ](u) =

1√
2πγ

(−i)ν√
2π

Γ(−ν)(u+ i0)ν . (4.17)

Therefore, the corresponding x-representation

ηE
+(x) = (U F [ψ−E

+ ])(x) , (4.18)

is given by

ηE
+(x) =

C√
2πγ

(−i)ν√
2π

Γ(−ν)
∫ ∞

−∞
(u+ i0)νeiS(x,u)du

=
C√
2πγ

(−i)ν√
2π

(2
√
i)ν+1 Γ(−ν) e y2

4

∫ ∞

−∞
(ξ + i0)ν e−2ξ2−2iyξ dξ , (4.19)
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with y =
√

2iγx. Now, using the following integral representation (formula 9.241(1) in [18])

Dν(y) =
1√
π

2ν+ 1

2 (−i)νe y2

4

∫ ∞

−∞
(ξ + i0)ν e−2ξ2+2iyξ dξ , (4.20)

one obtains

ηE
+(x) =

C0√
2πγ

√
i

ν+ 1

2 Γ(−ν)Dν(−
√

2iγx) . (4.21)

Similarly one shows that
ηE
−(x) = (U F [ψ−E

− ])(x) , (4.22)

is given by

ηE
−(x) =

C0√
2πγ

√
i

ν+ 1

2 Γ(−ν)Dν(
√

2iγx) . (4.23)

Let us note, that
ν + 1 = −ν , (4.24)

and √
i

ν+ 1

2 =
√
i

ν+ 1

2 . (4.25)

Clearly, the transition ν+1 −→ −ν is equivalent to E −→ −E and it corresponds to the fact
that ĤηE

+ = −EηE
+ while ĤχE

+ = +EχE
+. The symmetry between χE

± and ηE
± fully justifies

the specific choice of the phase factor in the constant C. One has

ηE
±(x) = χE

±(x) , (4.26)

that is they are related by the time reversal operator T: ηE
± = TχE

±. Thus energy eigenstates
ηE
± correspond to the time reversed system. This way all four solutions of (4.4) were used to

construct four families of energy eigenstates: χE
+, χE

−, ηE
+ and ηE

− .

5 Analytic continuation, resolvent and resonances

Now, let us continue the energy eigenfunctions χE
± and ηE

± into the energy complex plane
E ∈ C and let us study its analyticity as functions of E.

Proposition 4 The parabolic cylinder function Dλ(z) is an analytic function of λ ∈ C.

For the proof see the Appendix. Due to the above proposition the analytic properties of
the energy eigenfunctions are entirely governed by the analytic properties of the Γ function
which is present in the definition of χE

± and ηE
± . Since Γ(λ) has simple poles at λ = −n,

with n = 0, 1, 2, . . ., functions χE
± have poles at E = −En, whereas functions ηE

± have poles
at E = En, where En is defined in (2.10). Using a well known formula for a residue of the Γ
function

Res (Γ(λ);λ = −n) =
(−1)n

n!
, (5.1)

one has

Res
(
χE
±(x);−En

)
=

C0√
2πγ

(−1)n

n!

√
i
−n− 1

2 Dn(∓
√

−2iγx) , (5.2)
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and

Res
(
ηE
±(x);+En

)
=

C0√
2πγ

(−1)n

n!

√
i

n+ 1

2 Dn(∓
√

2iγx) . (5.3)

Hence, using the relation [18, 19, 20]:5

Dn(z) = 2−
n
2 e−

z2

4 Hn

(
z√
2

)
, n = 0, 1, 2, . . . , (5.4)

together with
Hn(−z) = (−1)nHn(z) , (5.5)

one obtains
Res

(
χE
±(x);−En

)
∼ f+n (x) , (5.6)

and
Res

(
ηE
±(x);+En

)
∼ f−n (x) . (5.7)

Now, it is natural to introduce two Hardy classes of functions [21]. Recall, that a smooth
function f = f(E) is in the Hardy class from above H2

+ (from below H2
−) if f(E) is a boundary

value of an analytic function in the upper, i.e. ImE ≥ 0 (lower, i.e. ImE ≤ 0) half complex
E-plane vanishing faster than any power of E at the upper (lower) semi-circle |E| → ∞.
Define

Φ− :=
{
φ ∈ S(Rx)

∣∣∣ f(E) := 〈χE
±|φ 〉 ∈ H2

−

}
, (5.8)

and
Φ+ :=

{
φ ∈ S(Rx)

∣∣∣ f(E) := 〈 ηE
± |φ 〉 ∈ H2

+

}
. (5.9)

It is evident from (4.26) that Φ+ = Φ−, that is

Φ+ = T(Φ−) . (5.10)

Due to the Gel’fand-Maurin spectral theorem [22, 23] any function φ− ∈ Φ− may be decom-
posed with respect to χE

± family

φ−(x) =
∑

±

∫ ∞

−∞
dE χE

±(x)〈χE
±|φ− 〉 , (5.11)

and any function φ+ ∈ Φ+ may be decomposed with respect to ηE
± family

φ+(x) =
∑

±

∫ ∞

−∞
dE ηE

±(x)〈 ηE
± |φ+ 〉 . (5.12)

Applying the Residue Theorem one easily proves the following

5In [18] the corresponding equation 9.253 has a wrong sign.
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Theorem 1 For any function φ± ∈ Φ± one has

φ−(x) =

∞∑

n=0

f−n (x)〈 f+n |φ− 〉 , (5.13)

and

φ+(x) =

∞∑

n=0

f+n (x)〈 f−n |φ+ 〉 . (5.14)

The proof goes along the same lines as the corresponding proof of Theorem 2 in [1]. The
above theorem implies the following spectral resolutions of the Hamiltonian:

Ĥ =
∑

±

∫ ∞

−∞
dE E|χE

± 〉〈χE
±| = −

∞∑

n=0

En|f−n 〉〈 f+n | , (5.15)

on Φ−, and

Ĥ =
∑

±

∫ ∞

−∞
dE E|ηE

± 〉〈 ηE
± | =

∞∑

n=0

En|f+n 〉〈 f−n | , (5.16)

on Φ+. The same techniques may be applied for the resolvent operator

R(z, Ĥ) =
1

Ĥ − z
. (5.17)

One obtains

R(z, Ĥ) =
∑

±

∫ ∞

−∞

dE

E − z
|χE

± 〉〈χE
±| =

∞∑

n=0

1

−En − z
|f−n 〉〈 f+n | , (5.18)

on Φ−, and

R(z, Ĥ) =
∑

±

∫ ∞

−∞

dE

E − z
|ηE

± 〉〈 ηE
± | =

∞∑

n=0

1

En − z
|f+n 〉〈 f−n | , (5.19)

on Φ+. Hence, R(z, Ĥ)|Φ−
has poles at z = −En, and R(z, Ĥ)|Φ+

has poles at z = En.
As usual eigenvectors f−n and f+n corresponding to poles of the resolvent are interpreted as
resonant states. Note, that

− 1

2πi

∮

γn

R(z, Ĥ)dz = |f+n 〉〈 f−n | := P̂n , (5.20)

where γn is a closed curve that encircles the singularity z = En. Clearly,

P̂n · P̂m = δnmP̂n , (5.21)

and the spectral decomposition of Ĥ may be written as follows:

Ĥ =
∞∑

n=0

EnP̂n = −
∞∑

n=0

EnP̂
†
n . (5.22)
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Finally, let us note, that restriction of the unitary group U(t) = e−iĤt defined on the
Hilbert space L2(R) to Φ± no longer defines a group. It gives rise to two semigroups:

U−(t) : Φ− −→ Φ− , for t ≥ 0 , (5.23)

and
U+(t) : Φ+ −→ Φ+ , for t ≤ 0 . (5.24)

Using (5.15), (5.16) and the formula for En = iγ(n + 1
2 ) one finds:

φ−(t) = U−(t)φ− =

∞∑

n=0

e−γ(n+ 1

2
)t P̂ †

nφ
− , (5.25)

for t ≥ 0, and

φ+(t) = U+(t)φ+ =
∞∑

n=0

eγ(n+ 1

2
)t P̂nφ

+ , (5.26)

for t ≤ 0. We stress that φ−t (φ+
t ) does belong to L2(R) also for t < 0 (t > 0). However,

φ−t ∈ Φ− (φ+
t ∈ Φ+) only for t ≥ 0 (t ≤ 0). This way the irreversibility enters the dynamics

of the reversed oscillator by restricting it to the dense subspace Φ± of L2(R).

6 Scattering vs. resonant states

To compare the physical properties of energy eigenstates χE
± and ηE

± and resonant states f±n
let us investigate its asymptotic behavior at x −→ ±∞. Following [20] (see also [10, 11]) one
finds6

χE
−(x→ +∞) ∼

√
1

x
exp

[
i

(
γ

2
x2 +

E

γ
log(

√
2γx) +

π

4

E

γ
+
π

8

)]
, (6.1)

and

χE
−(x→ −∞) ∼ i

√
1

x

{(
1 + e−2π E

γ

)
exp

[
−i

(
γ

2
x2 +

E

γ
log(

√
2γx) − π

4

E

γ
+

3π

8
+ φ

)]

− e
−π E

γ exp

[
i

(
γ

2
x2 − E

γ
log(

√
2γx) − π

4

E

γ
+
π

8

)]}
, (6.2)

where φ = arg Γ(−iEγ + 1
2) = Γ(ν + 1). Hence energy eigenstates χE

− represent scattering

states (see [10] for more details). The same is true for χE
+ and ηE

± . In particular one finds for

6Putting a = −E/γ in equation 19.17.9 in [20] and using relation 19.3.1

U(a, x) = D
−a− 1

2

(x) ,

one finds:

U

(
−i

E

γ
,
√

2γxe−
1

4
iπ

)
= D−ν−1(

√
−2iγx) ∼ χE

−(x) .
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the reflection and transmission amplitudes R and T for χE
± scattering states [8, 10]:

R(χE
±) = − i√

2π
e−

πE
2γ Γ

(
1

2
− i

E

γ

)
, (6.3)

T (χE
±) =

1√
2π

e
πE
2γ Γ

(
1

2
− i

E

γ

)
. (6.4)

Clearly, computing R and T for time-reversed ηE
± scattering states one finds:

R(ηE
±) = R(χE

±) , T (ηE
±) = T (χE

±) . (6.5)

Note, that R(χE
±) and T (χE

±) have poles at E = −En, whereas R(ηE
±) and T (ηE

±) have poles
at E = +En. Obviously, the corresponding reflection and transition coefficients |R|2 and |T |2
are time-reversal invariant.

On the other hand the eigenstates f±n behave as follows:

f+n (x→ ±∞) ∼ (±
√
iγx)n e−i γ

2
x2

, (6.6)

and
f−n (x→ ±∞) ∼ (±

√
−iγx)n ei γ

2
x2

. (6.7)

Note, that f−n are purely outgoing states, whereas f+n are purely ingoing states. Moreover,
resonant states have Breit-Wigner energy distribution. Indeed,

〈χE
−|f+n 〉 ∼ Γ(−ν)

∫ ∞

−∞
Dν(

√
2γix) f+n (x) dx . (6.8)

Now, Dν is an entire function of ν and Γ(−ν) has poles at ν = k ∈ N. In the domain where
n+ 1 > Re ν ≥ 1 one has

Γ(−ν) = analytical part +
n∑

k=0

(−1)k

k!(k − ν)k
. (6.9)

Hence,

〈χE
−|f+n 〉 ∼ analytical function of E +

n∑

k=0

(−1)k

k!
(
k + iEγ + 1

2

) 〈 f−k |f+n 〉

∼ analytical function of E +
γ

E − En
, (6.10)

which is consistent with the Breit-Wigner formula.

A Appendix

The integral formula 9.241(2) in [18]

Dλ(y) =
e−

y2

4

Γ(−λ)

∫ ∞

−∞
ξ−λ−1
+ e−yξ−ξ2/2 dξ , (A.1)

12



contains two objects: Γ(−λ) and a distribution ξ−λ−1 which are singular for λ = 0, 1, 2, . . . .
However, it is easy to see [14] that

ξ−λ−1
+

Γ(−λ)

∣∣∣∣∣
p=n

= δ(n)(ξ) , (A.2)

which shows that (A.1) defines an entire function of λ ∈ C. The same is true for

Dλ(y) =
e−

y2

4

Γ(−λ)

∫ ∞

−∞
ξ−λ−1
− eyξ−ξ2/2 dξ , (A.3)

due to
ξ−λ−1
−

Γ(−λ)

∣∣∣∣∣
λ=n

= (−1)nδ(n)(ξ) . (A.4)

The second integral representation given by 9.241(1) in [18]

Dλ(y) =
1√
π

2λ+ 1

2 (−i)λe
y2

4

∫ ∞

−∞
(ξ + i0)λ e−2ξ2+2iyξ dξ , (A.5)

where (ξ + i0)λ = ξλ
+ + eiπλξλ

−, seems to have poles at λ = −1,−2, . . . . However, the limit
limλ→−n(ξ + i0)λ is well defined [14]

(ξ + i0)−n = ξ−n − iπ(−1)n−1

(n − 1)!
δ(n−1)(ξ) . (A.6)

Thus, formula (A.5) also defines an entire function of λ.
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