239 research outputs found

    Leveraging the performance of LBM-HPC for large sizes on GPUs using ghost cells

    Get PDF
    Today, we are living a growing demand of larger and more efficient computational resources from the scientific community. On the other hand, the appearance of GPUs for general purpose computing supposed an important advance for covering such demand. These devices offer an impressive computational capacity at low cost and an efficient power consumption. However, the memory available in these devices is (sometimes) not enough, and so it is necessary computationally expensive memory transfers from (to) CPU to (from) GPU, causing a dramatic fall in performance. Recently, the Lattice-Boltzmann Method has positioned as an efficient methodology for fluid simulations. Although this method presents some interesting features particularly amenable to be efficiently exploited on parallel computers, it requires a considerable memory capacity, which can suppose an important drawback, in particular, on GPUs. In the present paper, it is proposed a new GPU-based implementation, which minimizes such requirements with respect to other state-of-the-art implementations. It allows us to execute almost 2xx bigger problems without additional memory transfers, achieving faster executions when dealing with large problems

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Acinic cell carcinoma in pregnancy: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report an observational study on the etiology and recurrence of acinic cell carcinoma of the parotid gland that seemed to be related to pregnancy. The medical literature has never reported such an association; therefore, our case report is probably the first to mention this observation.</p> <p>Case presentation</p> <p>This report is of a 25-year-old Arabic female patient from the United Arab Emirates, who, during her first pregnancy, developed acinic cell carcinoma of the right parotid gland that was managed with surgical excision in the form of superficial parotidectomy. During her second pregnancy, which occurred four years later, she had a recurrence of the same malignant neoplasm associated with ipsilateral malignant cervical lymphadenopathy. The patient was managed with total parotidectomy and neck dissection, as well as postoperative adjuvant radiotherapy. Our observation on this particular case of acinic cell carcinoma is that the initial onset of her neoplasm was during her first pregnancy, and the recurrence of the same malignant disease was during a subsequent pregnancy. This chronologic association raised our suspicion that there might be a possible etiologic effect of pregnancy or its associated hormonal or physiologic changes or both on the pathogenesis or etiology of acinic cell carcinoma.</p> <p>Conclusion</p> <p>Some association might exist between pregnancy and the pathogenesis or etiology of acinic cell carcinoma.</p

    The challenges and opportunities of conducting a clinical trial in a low resource setting: The case of the Cameroon mobile phone SMS (CAMPS) trial, an investigator initiated trial

    Get PDF
    Conducting clinical trials in developing countries often presents significant ethical, organisational, cultural and infrastructural challenges to researchers, pharmaceutical companies, sponsors and regulatory bodies. Globally, these regions are under-represented in research, yet this population stands to gain more from research in these settings as the burdens on health are greater than those in developed resourceful countries. However, developing countries also offer an attractive setting for clinical trials because they often have larger treatment naive populations with higher incidence rates of disease and more advanced stages. These factors can present a reduction in costs and time required to recruit patients. So, balance needs to be found where research can be encouraged and supported in order to bring maximum public health benefits to these communities. The difficulties with such trials arise from problems with obtaining valid informed consent, ethical compensation mechanisms for extremely poor populations, poor health infrastructure and considerable socio-economic and cultural divides. Ethical concerns with trials in developing countries have received attention, even though many other non-ethical issues may arise. Local investigator initiated trials also face a variety of difficulties that have not been adequately reported in literature. This paper uses the example of the Cameroon Mobile Phone SMS trial to describe in detail, the specific difficulties encountered in an investigator-initiated trial in a developing country. It highlights administrative, ethical, financial and staff related issues, proposes solutions and gives a list of additional documentation to ease the organisational process

    Effect of Cellular Quiescence on the Success of Targeted CML Therapy

    Get PDF
    Similar to tissue stem cells, primitive tumor cells in chronic myelogenous leukemia have been observed to undergo quiescence; that is, the cells can temporarily stop dividing. Using mathematical models, we investigate the effect of cellular quiescence on the outcome of therapy with targeted small molecule inhibitors.According to the models, the initiation of treatment can result in different patterns of tumor cell decline: a biphasic decline, a one-phase decline, and a reverse biphasic decline. A biphasic decline involves a fast initial phase (which roughly corresponds to the eradication of cycling cells by the drug), followed by a second and slower phase of exponential decline (corresponding to awakening and death of quiescent cells), which helps explain clinical data. We define the time when the switch to the second phase occurs, and identify parameters that determine whether therapy can drive the tumor extinct in a reasonable period of time or not. We further ask how cellular quiescence affects the evolution of drug resistance. We find that it has no effect on the probability that resistant mutants exist before therapy if treatment occurs with a single drug, but that quiescence increases the probability of having resistant mutants if patients are treated with a combination of two or more drugs with different targets. Interestingly, while quiescence prolongs the time until therapy reduces the number of cells to low levels or extinction, the therapy phase is irrelevant for the evolution of drug resistant mutants. If treatment fails as a result of resistance, the mutants will have evolved during the tumor growth phase, before the start of therapy. Thus, prevention of resistance is not promoted by reducing the quiescent cell population during therapy (e.g., by a combination of cell activation and drug-mediated killing).The mathematical models provide insights into the effect of quiescence on the basic kinetics of the response to targeted treatment of CML. They identify determinants of success in the absence of drug resistant mutants, and elucidate how quiescence influences the emergence of drug resistant mutants

    Combination of Two but Not Three Current Targeted Drugs Can Improve Therapy of Chronic Myeloid Leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is a cancer of the hematopoietic system and has been treated with the drug Imatinib relatively successfully. Drug resistance, acquired by mutations, is an obstacle to success. Two additional drugs are now considered and could be combined with Imatinib to prevent resistance, Dasatinib and Nilotinib. While most mutations conferring resistance to one drug do not confer resistance to the other drugs, there is one mutation (T315I) that induces resistance against all three drugs. Using computational methods, the combination of two drugs is found to increase the probability of treatment success despite this cross-resistance. Combining more than two drugs, however, does not provide further advantages. We also explore possible combination therapies using drugs currently under development. We conclude that among the targeted drugs currently available for the treamtent of CML, only the two most effective ones should be used in combination for the prevention of drug resistance

    Icaritin Shows Potent Anti-Leukemia Activity on Chronic Myeloid Leukemia In Vitro and In Vivo by Regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT Signalings

    Get PDF
    PURPOSE: To explore the effects of Icaritin on chronic myeloid leukemia (CML) cells and underlying mechanisms. METHOD: CML cells were incubated with various concentration of Icaritin for 48 hours, the cell proliferation was analyzed by MTT and the apoptosis was assessed with Annexin V and Hoechst 33258 staining. Cell hemoglobinization was determined. Western blotting was used to evaluate the expressions of MAPK/ERK/JNK signal pathway and Jak-2/Phorpho-Stat3/Phorsph-Akt network-related protein. NOD-SCID nude mice were applied to demonstrate the anti-leukemia effect of Icaritin in vivo. RESULTS: Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis and promoted the erythroid differentiation of K562 cells with time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis. In mouse leukemia model, Icaritin could prolong lifespan of NOD-SCID nude mice inoculated with K562 cells as effective as Imatinib without suppression of bone marrow. Icaritin could up-regulate phospho-JNK or phospho-C-Jun and down-regulate phospho-ERK, phospho-P-38, Jak-2, phospho-Stat3 and phospho-Akt expression with dose- or time-dependent manner. Icaritin had no influence both on c-Abl and phospho-c-Abl protein expression and mRNA levels of Bcr/Abl. CONCLUSION: Icaritin from Chinese herb medicine may be a potential anti-CML agent with low adverse effect. The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML

    Molecular Epidemiology of HIV-1 Subtypes in India: Origin and Evolutionary History of the Predominant Subtype C

    Get PDF
    This thesis describes the translational genomics of HIV-1subtype C in India from its origin to therapeutic response with the aim to improve our knowledge for better therapeutic and preventive strategies to combat HIV/AIDS. In a systemic approach, we identified the molecular phylogeny of HIV-1 subtypes circulating in India and the time to most recent common ancestors (tMRCA) of predominant HIV-1 subtype C strains. Additionally, this thesis also studied drug resistance mutations in children, adolescents and adults, the role of host factors in evolution of drug resistance, and population dynamics of viremia and viral co-receptor tropism in perinatal transmission. Finally, the long term therapeutic responses on Indian national first-line antiretroviral therapy were also studied. In Paper I, we reported an increase in the HIV-1 recombinant forms in the HIV-1 epidemiology using a robust subtyping methodology. While the study confirmed HIV- 1 subtype C as a dominant subtype, its origin was dated back to the early 1970s from a single or few genetically related strains from South Africa, whereafter, it has evolved independently. In Paper II, the lethal hypermutations due to the activity of human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (hA3G) was significantly associated with antiretroviral therapy (ART) failure in Indian HIV-1 subtype C patients. The presence of M184I and M230I mutations were observed due to the editing of hA3G in the proviral compartment but stop codons were also found in the open reading frames and the same drug resistance mutations were absent in plasma virus. Therefore, it is unlikely that the viral variants which exhibit hypermutated sequences and M184I and/or M230I will mature and expand in vivo and hence are unlikely to have any clinical significance. The high concordance of drug resistance genotyping in the plasma and proviral compartments in therapy-naïve patients, gives weight to the idea of using whole blood for surveillance of drug resistance mutations which precludes logistic challenges of cold chain transport. In Papers III and IV, we identified a substantial proportion of HIV-1 subtype C perinatally-infected older children who had a high burden of plasma viremia but also had high CD4+ T-cell counts. In addition, older children with HIV-1 subtype C infection presented a high prevalence of predicted X4 and R5/X4 tropic strains which indicates that HIV-1 subtype C strains required longer duration of infection and greater disease progression to co-receptor transition from R5- to X4-tropic strains (IV). Our studies also indicate that transmitted drug resistance is low among Indian HIV-1 infected children, adolescents (III) and adults (II). In Paper V, in a longitudinal cohort study, a good long-term response to the Indian national first-line therapy for a median of nearly four years with 2.8% viral failure, indicating the overall success of the Indian ART program. Our study also showed that three immunologically well patients with virological rebound and major viral drug resistance mutations (M184V, K103N and Y181C) during one study visit had undetectable viral load at their next visit. These findings suggest that use of multiple parameters like patients’ immunological (CD4+ T-cell count), virological (viral load) and drug resistance data should all be used to optimize the treatment switch to second line therapy. In conclusion, this translational genomics study enhances our knowledge about the HIV-1 subtype C strains circulating in India which are genetically distinct from prototype African subtype C strains. Considerably more research using appropriate models need to be performed to understand the phenotypic and biological characteristics of these strains to guide efficient disease intervention and management strategies
    corecore