77 research outputs found

    WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth

    Get PDF
    ABSTRACT: INTRODUCTION: In breast cancer deregulation of the WNT signaling pathway occurs by autocrine mechanisms. WNT ligands and Frizzled (FZD) receptors are coexpressed in primary breast tumors and cancer cell lines. Moreover, many breast tumors show hypermethylation of secreted Frizzled-related protein 1 (sFRP1)'s promoter region, causing low expression of this WNT antagonist. We have previously shown that the WNT pathway influences proliferation of breast cancer cell lines via activation of canonical signaling and epidermal growth factor receptor (EGFR) transactivation, and that interference with WNT signaling reduces proliferation. Here we examine the role of WNT signaling in breast tumor cell migration and on xenograft outgrowth. METHODS: The breast cancer cell line MDA-MB-231 was used to study WNT signaling. We examined the effects of activating or blocking the WNT pathway on cell motility by treatment with WNT ligands or by ectopic sFPR1 expression, respectively. The ability of sFRP1 expressing MDA-MB-231 cells to grow as xenografts was also tested. Microarray analyses were carried out to identify targets with roles in MDA-MB-231/sFRP1 tumor growth inhibition. RESULTS: We show that WNT stimulates the migratory ability of MDA-MB-231 cells. Furthermore, ectopic expression of sFRP1 in MDA-MB-231 cells blocks canonical WNT signaling and decreases their migratory potential. Moreover, the ability of MDA-MB-231/sFRP1 expressing cells to grow as xenografts in mammary glands and to form lung metastases is dramatically impaired. Microarray analyses led to the identification of two genes, CCND1 and CDKN1A, whose expression level is selectively altered in vivo in sFRP1 expressing tumors. The encoded proteins, Cyclin D1 and p21Cip1 were down- and up-regulated, respectively, in sFRP1 expressing tumors, suggesting that they are downstream mediators of WNT signaling. CONCLUSIONS: Our results show that the WNT pathway influences multiple biological properties of MDA-MB-231 breast cancer cells. WNT stimulates tumor cell motility; conversely sFRP1 mediated WNT pathway blockade reduces motility. Moreover, ectopic sFRP1 expression in MDA-MB-231 cells has a strong negative impact on tumor outgrowth and blocked lung metastases. These results suggest that interference with WNT signaling using sFRP1 to block the ligand-receptor interaction may be a valid therapeutic approach in breast cancer

    Dynamic Changes of Circulating Tumor DNA Predict Clinical Outcome in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Immune Checkpoint Inhibitors

    Get PDF
    PURPOSE Immune checkpoint inhibitors (ICIs) are increasingly being used in non-small-cell lung cancer (NSCLC), yet biomarkers predicting their benefit are lacking. We evaluated if on-treatment changes of circulating tumor DNA (ctDNA) from ICI start (t0) to after two cycles (t1) assessed with a commercial panel could identify patients with NSCLC who would benefit from ICI. PATIENTS AND METHODS The molecular ctDNA response was evaluated as a predictor of radiographic tumor response and long-term survival benefit of ICI. To maximize the yield of ctDNA detection, de novo mutation calling was performed. Furthermore, the impact of clonal hematopoiesis (CH)-related variants as a source of biologic noise was investigated. RESULTS After correction for CH-related variants, which were detected in 75 patients (44.9%), ctDNA was detected in 152 of 167 (91.0%) patients. We observed only a fair agreement of the molecular and radiographic response, which was even more impaired by the inclusion of CH-related variants. After exclusion of those, a β‰₯ 50% molecular response improved progression-free survival (10 v 2 months; hazard ratio [HR], 0.55; 95% CI, 0.39 to 0.77; P =.0011) and overall survival (18.4 v 5.9 months; HR, 0.44; 95% CI, 0.31 to 0.62; P,.0001) compared with patients not achieving this end point. After adjusting for clinical variables, ctDNA response and STK11/KEAP1 mutations (HR, 2.08; 95% CI, 1.4 to 3.0; P,.001) remained independent predictors for overall survival, irrespective of programmed death ligand-1 expression. A landmark survival analysis at 2 months (n = 129) provided similar results. CONCLUSION On-treatment changes of ctDNA in plasma reveal predictive information for long-term clinical benefit in ICI-treated patients with NSCLC. A broader NSCLC patient coverage through de novo mutation calling and the use of a variant call set excluding CH-related variants improved the classification of molecular responders, but had no significant impact on survival

    Reorganisation of Wnt-response pathways in colorectal tumorigenesis

    Get PDF
    In most colorectal tumours, APC mutation stabilises Ξ²-catenin and mimics elements of Wnt growth factor signalling, but the high frequency of epigenetic loss of Wnt antagonists indicates an additional role for ligand-mediated Wnt signalling. Here, we have investigated the expression of key components of Ξ²-catenin-independent Wnt response pathways to determine whether their profiles change during the transition from normal mucosa to colorectal adenomas. Transcription of the Wnt/planar cell polarity pathway determinant NKD1 (naked cuticle homologue 1) was induced in adenomas by a median 135-fold and in cancers by 7.4-fold. While some Frizzleds (FZDs) were downregulated in adenomas, the Wnt/Ca2+ receptors FZD3 and FZD6 were induced by a median factor of 6.5 and 4.6, respectively. Naked cuticle homologue 1, FZD3 and FZD6 expression were coordinated in pre-malignant disease, but this relationship was lost in invasive cancers, where FZD induction was seen less frequently. Naked cuticle homologue 1 expression was associated with nuclear localisation of phospho-c-Jun in adenomas. In cultured cells, NKD1 transcription was induced by lithium chloride but FZD3 expression required Wnt growth factor treatment. These data show that Wnt responses are consistently directed towards both Ξ²-catenin-independent routes in early colorectal tumorigenesis and elements of this are retained in more advanced cancers. These Ξ²-catenin-independent Wnt signalling pathways may provide novel targets for chemoprevention of early colorectal tumours

    Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish

    Get PDF
    In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning

    Integration of the Ξ²-Catenin-Dependent Wnt Pathway with Integrin Signaling through the Adaptor Molecule Grb2

    Get PDF
    THE COMPLEXITY OF WNT SIGNALING LIKELY STEMS FROM TWO SOURCES: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified.Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of beta-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA) LRP6, Dvl2 or CA-beta-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN) Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of beta-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK), and this is blocked by DN-Grb2.These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling

    Key signalling nodes in mammary gland development and cancer: Myc

    Get PDF
    Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer

    Dvl2-Dependent Activation of Daam1 and RhoA Regulates Wnt5a-Induced Breast Cancer Cell Migration

    Get PDF
    The Dishevelled (Dvl) and Dishevelled-associated activator of morphogenesis 1 (Daam1) pathway triggered by Wnt5a regulates cellular polarity during development and tissue homoeostasis. However, Wnt5a signaling in breast cancer progression remains poorly defined.We showed here that Wnt5a activated Dvl2, Daam1 and RhoA, and promoted migration of breast cancer cells, which was, however, abolished by Secreted Frizzled-related protein 2 (sFRP2) pretreatment. Dominant negative Dvl2 mutants or Dvl2 siRNA significantly decreased Wnt5a-induced Daam1/RhoA activation and cell migration. Ectopic expression of N-Daam1, a dominant negative mutant, or Daam1 siRNA remarkably inhibited Wnt5a-induced RhoA activation, stress fiber formation and cell migration. Ectopic expression of dominant negative RhoA (N19) or C3 exoenzyme transferase, a Rho inhibitor, decreased Wnt5a-induced stress fiber formation and cell migration.Taken together, we demonstrated for the first time that Wnt5a promotes breast cancer cell migration via Dvl2/Daam1/RhoA

    Activation Status of Wnt/ß-Catenin Signaling in Normal and Neoplastic Breast Tissues: Relationship to HER2/neu Expression in Human and Mouse

    Get PDF
    Wnt/ß-catenin signaling is strongly implicated in neoplasia, but the role of this pathway in human breast cancer has been controversial. Here, we examined Wnt/ß-catenin pathway activation as a function of breast cancer progression, and tested for a relationship with HER2/neu expression, using a human tissue microarray comprising benign breast tissues, ductal carcinoma in situ (DCIS), and invasive carcinomas. Cores were scored for membranous ß-catenin, a key functional component of adherens junctions, and for nucleocytoplasmic ß-catenin, a hallmark of Wnt/ß-catenin pathway activation. Only 82% of benign samples exhibited membrane-associated ß-catenin, indicating a finite frequency of false-negative staining. The frequency of membrane positivity was similar in DCIS samples, but was significantly reduced in carcinomas (45%, P<0.001), consistent with loss of adherens junctions during acquisition of invasiveness. Negative membrane status in cancers correlated with higher grade (Pβ€Š=β€Š0.04) and estrogen receptor-negative status (Pβ€Š=β€Š0.03), both indices of poor prognosis. Unexpectedly, a substantial frequency of nucleocytoplasmic ß-catenin was observed in benign breast tissues (36%), similar to that in carcinomas (35%). Positive-staining basal nuclei observed in benign breast may identify putative stem cells. An increased frequency of nucleocytoplasmic ß-catenin was observed in DCIS tumors (56%), suggesting that pathway activation may be an early event in human breast neoplasia. A correlation was observed between HER2/neu expression and nucleocytoplasmic ß-catenin in node-positive carcinomas (Pβ€Š=β€Š0.02). Furthermore, cytoplasmic ß-catenin was detected in HER2/neu-induced mouse mammary tumors. The Axin2NLSlacZ mouse strain, a previously validated reporter of mammary Wnt/ß-catenin signaling, was utilized to define in vivo transcriptional consequences of HER2/neu-induced ß-catenin accumulation. Discrete hyperplastic foci observed in mammary glands from bigenic MMTV/neu, Axin2NLSlacZ mice, highlighted by robust ß-catenin/TCF signaling, likely represent the earliest stage of mammary intraepithelial neoplasia in MMTV/neu mice. Our study thus provides provocative evidence for Wnt/ß-catenin signaling as an early, HER2/neu-inducible event in breast neoplasia

    A Comparative Analysis of Extra-Embryonic Endoderm Cell Lines

    Get PDF
    Prior to gastrulation in the mouse, all endodermal cells arise from the primitive endoderm of the blastocyst stage embryo. Primitive endoderm and its derivatives are generally referred to as extra-embryonic endoderm (ExEn) because the majority of these cells contribute to extra-embryonic lineages encompassing the visceral endoderm (VE) and the parietal endoderm (PE). During gastrulation, the definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE comprises most of the cells of the gut and its accessory organs. Despite their different origins and fates, there is a surprising amount of overlap in marker expression between the ExEn and DE, making it difficult to distinguish between these cell types by marker analysis. This is significant for two main reasons. First, because endodermal organs, such as the liver and pancreas, play important physiological roles in adult animals, much experimental effort has been directed in recent years toward the establishment of protocols for the efficient derivation of endodermal cell types in vitro. Conversely, factors secreted by the VE play pivotal roles that cannot be attributed to the DE in early axis formation, heart formation and the patterning of the anterior nervous system. Thus, efforts in both of these areas have been hampered by a lack of markers that clearly distinguish between ExEn and DE. To further understand the ExEn we have undertaken a comparative analysis of three ExEn-like cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal carcinomas (EC) of 129 strain mice and have been characterized as parietal endoderm-like [1], END2 cells are derived from P19 ECs and described as visceral endoderm-like, while XEN cells are derived from blastocyst stage embryos and are described as primitive endoderm-like. Our analysis suggests that none of these cell lines represent a bona fide single in vivo lineage. Both PYS2 and XEN cells represent mixed populations expressing markers for several ExEn lineages. Conversely END2 cells, which were previously characterized as VE-like, fail to express many markers that are widely expressed in the VE, but instead express markers for only a subset of the VE, the anterior visceral endoderm. In addition END2 cells also express markers for the PE. We extended these observations with microarray analysis which was used to probe and refine previously published data sets of genes proposed to distinguish between DE and VE. Finally, genome-wide pathway analysis revealed that SMAD-independent TGFbeta signaling through a TAK1/p38/JNK or TAK1/NLK pathway may represent one mode of intracellular signaling shared by all three of these lines, and suggests that factors downstream of these pathways may mediate some functions of the ExEn. These studies represent the first step in the development of XEN cells as a powerful molecular genetic tool to study the endodermal signals that mediate the important developmental functions of the extra-embryonic endoderm. Our data refine our current knowledge of markers that distinguish various subtypes of endoderm. In addition, pathway analysis suggests that the ExEn may mediate some of its functions through a non-classical MAP Kinase signaling pathway downstream of TAK1
    • …
    corecore