655 research outputs found

    The Kondo crossover in shot noise of a single quantum dot with orbital degeneracy

    Full text link
    We investigate out of equilibrium transport through an orbital Kondo system realized in a single quantum dot, described by the multiorbital impurity Anderson model. Shot noise and current are calculated up to the third order in bias voltage in the particle-hole symmetric case, using the renormalized perturbation theory. The derived expressions are asymptotically exact at low energies. The resulting Fano factor of the backscattering current FbF_b is expressed in terms of the Wilson ratio RR and the orbital degeneracy NN as Fb=1+9(N−1)(R−1)21+5(N−1)(R−1)2F_b =\frac{1 + 9(N-1)(R-1)^2}{1 + 5(N-1)(R-1)^2} at zero temperature. Then, for small Coulomb repulsions UU, we calculate the Fano factor exactly up to terms of order U5U^5, and also carry out the numerical renormalization group calculation for intermediate UU in the case of two- and four-fold degeneracy (N=2, 4N=2,\,4). As UU increases, the charge fluctuation in the dot is suppressed, and the Fano factor varies rapidly from the noninteracting value Fb=1F_b=1 to the value in the Kondo limit Fb=N+8N+4F_b=\frac{N+8}{N+4}, near the crossover region U∼πΓU\sim \pi \Gamma, with the energy scale of the hybridization Γ\Gamma.Comment: 10 pages, 4 figure

    Thermopower of Kondo Effect in Single Quantum Dot Systems with Orbital at Finite Temperatures

    Full text link
    We investigate the thermopower due to the orbital Kondo effect in a single quantum dot system by means of the noncrossing approximation. It is elucidated how the asymmetry of tunneling resonance due to the orbital Kondo effect affects the thermopower under gate-voltage and magnetic-field control.Comment: 4 pages, 4 figures, proceeding of Second International Symposium on Nanometer-Scale Quantum Physic

    A Large-scale CO Imaging of the Galactic Center. II. Dynamical Properties of Molecular Clouds

    Get PDF
    The data from the Nobeyama Radio Observatory 45 m telescope Galactic Center CO survey have been analyzed to generate a compilation of molecular clouds with intense CO emission in this region. Clouds are identified in an automated manner throughout the main part of the survey data for all CO emission peaks exceeding 10 K (TR∗T_R^*). Correlations between the size, velocity dispersion, virial mass, and the CO luminosity, for the molecular clouds in the Galactic center were shown. We diagnosed gravitational stabilities of identified clouds assuming that the disk clouds are nearly at the onset of gravitational instability. Most of the clouds and cloud complexes in the Galactic center are gravitationally stable, while some clouds with intense CO emission are gravitationally unstable.Comment: 4 pages, 4 figures, to appear in the Proceedings of the 32nd COSPAR Scientific Assembl

    A four-year baseline Swift study of enigmatic X-ray transients located near the Galactic center

    Get PDF
    We report on continued monitoring observations of the Galactic center carried out by the X-ray telescope aboard the Swift satellite in 2008 and 2009. This campaign revealed activity of the five known X-ray transients AX J1745.6-2901, CXOGC J174535.5-290124, GRS 1741-2853, XMM J174457-2850.3 and CXOGC J174538.0-290022. All these sources are known to undergo very faint X-ray outbursts with 2-10 keV peak luminosities of Lx,peak~1E34-1E36 erg/s, although the two confirmed neutron star low-mass X-ray binaries AX J1745.6-2901 and GRS 1741-2853 can also become brighter (Lx,peak~1E36-1E37 erg/s). We discuss the observed long-term lightcurves and X-ray spectra of these five enigmatic transients. In 2008, AX J1745.6-2901 returned to quiescence following an unusually long accretion outburst of more than 1.5 years. GRS 1741-2853 was active in 2009 and displayed the brightest outburst ever recorded for this source, reaching up to a 2-10 keV luminosity of Lx~1E37 (D/7.2 kpc)^2 erg/s. This system appears to undergo recurrent accretion outbursts approximately every 2 years. Furthermore, we find that the unclassified transient XMM J174457-2850.3 becomes bright only during short episodes (days) and is often found active in between quiescence (Lx~1E32 erg/s) and its maximum outburst luminosity of Lx~1E36 erg/s. CXOGC J174535.5-290124 and CXOGC J174538.0-290022, as well as three other very-faint X-ray transients that were detected by Swift monitoring observations in 2006, have very low time-averaged mass-accretion rates of ~< 2E-12 Msun/yr. Despite having obtained two years of new data in 2008 and 2009, no new X-ray transients were detected.Comment: Minor textual revisions according to referee report, accepted for publication in A&

    Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting

    Full text link
    In layered polar semiconductor BiTeI, giant Rashba-type spin-split band dispersions show up due to the crystal structure asymmetry and the strong spin-orbit interaction. Here we investigate the 3-dimensional (3D) bulk band structures of BiTeI using the bulk-sensitive hνh\nu-dependent soft x-ray angle resolved photoemission spectroscopy (SX-ARPES). The obtained band structure is shown to be well reproducible by the first-principles calculations, with huge spin splittings of ∼300{\sim}300 meV at the conduction-band-minimum and valence-band-maximum located in the kz=π/ck_z=\pi/c plane. It provides the first direct experimental evidence of the 3D Rashba-type spin splitting in a bulk compound.Comment: 9 pages, 4 figure

    1/(N-1) expansion based on a perturbation theory in U for the Anderson model with N-fold degeneracy

    Full text link
    We study low-energy properties of the N-fold degenerate Anderson model. Using a scaling that takes u=(N-1) U as an independent variable in place of the Coulomb interaction U, the perturbation series in U is reorganized as an expansion in powers of 1/(N-1). We calculate the renormalized parameters, which characterize the Kondo state, to the next leading order in the 1/(N-1) expansion at half-filling. The results, especially the Wilson ratio, agree very closely with the exact numerical renormalization group results at N=4. This ensures the applicability of our approach to N > 4, and we present highly reliable results for nonequilibrium Kondo transport through a quantum dot.Comment: 5 pages, 6 figure

    ASCA Observations of the Jet Source XTE J1748-288

    Full text link
    XTE J1748-288 is a new X-ray transient with a one-sided radio jet. It was observed with ASCA on 1998/09/06 and 1998/09/26, 100 days after the onset of the radio-X-ray outburst. The spectra were fitted with an attenuated power-law model, and the 2-6-keV flux was 4.6 * 10^{-11} erg s^{-1} cm^{-2} and 2.2 * 10^{-12} on 09/06 and 09/26, respectively. The light curve showed that the steady exponential decay with an e-folding time of 14 days lasted over 100 days and 4 orders of magnitude from the peak of the outburst. The celestial region including the source had been observed with ASCA on 1993/10/01 and 1994/09/22, years before the discovery. In those period, the flux was < 10^{-13} erg s^{-1} cm^{-2}, below ASCA's detection limit. The jet blob colliding to the environmental matter was supposedly not the X-ray source, although the emission mechanism has not been determined. A possible detection of a K line from highly ionized iron is discussed.Comment: 11 pages, 4 figures, submitted to ApJL. Fig2 is replaced with correct on

    Motion of glossy objects does not promote separation of lighting and surface colour

    Get PDF
    The surface properties of an object, such as texture, glossiness or colour, provide important cues to its identity. However, the actual visual stimulus received by the eye is determined by both the properties of the object and the illumination. We tested whether operational colour constancy for glossy objects (the ability to distinguish changes in spectral reflectance of the object, from changes in the spectrum of the illumination) was affected by rotational motion of either the object or the light source. The different chromatic and geometric properties of the specular and diffuse reflections provide the basis for this discrimination, and we systematically varied specularity to control the available information. Observers viewed animations of isolated objects undergoing either lighting or surface-based spectral transformations accompanied by motion. By varying the axis of rotation, and surface patterning or geometry, we manipulated: (i) motion-related information about the scene, (ii) relative motion between the surface patterning and the specular reflection of the lighting, and (iii) image disruption caused by this motion. Despite large individual differences in performance with static stimuli, motion manipulations neither improved nor degraded performance. As motion significantly disrupts frameby-frame low-level image statistics, we infer that operational constancy depends on a high-level scene interpretation, which is maintained in all condition
    • …
    corecore