96,025 research outputs found

    An elementary differential extension of odd K-theory

    No full text

    Interstellar 12C/13C from CH+ absorption lines: Results from an extended survey

    Full text link
    The 12C/13C isotope ratio in the interstellar medium (ISM), and its evolution with time, is an important tracer of stellar yields. Spatial variations of this ratio can be used to study mixing in the ISM. We want to determine this ratio and its spatial variations in the local ISM from CH+ absorption lines in the optical towards early-type stars. The aim is to determine the average value for the local ISM and study possible spatial variations. We observed a large number of early-type stars with Feros to extend the sample of suitable target stars for CH+ isotope studies. The best suited targets were observed with Uves with higher signal-to-noise ratio and spectral resolution to determine the isotope ratio from the interstellar CH+ lines. This study significantly expands the number of 13CH+ detections. We find an average ratio of = 76.27 +- 1.94 or, for f = 1/R, = (120.46 +- 3.02) 10^{-4}. The scatter in f is 6.3 sigma(). This findings strengthens the case for chemical inhomogeneity in the local ISM, with important implications for the mixing in the ISM. Given the large scatter, the present-day value in the ISM is not significantly larger than the solar value, which corresponds to the local value 4.5 Gyr ago.Comment: 11 pages, 16 figures, 2 tables, A&A submitte

    Optical study of flow and combustion in an HCCI engine with negative valve overlap

    Get PDF
    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed. © 2006 IOP Publishing Ltd
    • …
    corecore