176 research outputs found

    Peculiarities of pinning and microwave absorption hysteresis in thin superconducting films

    Get PDF
    The results of experimental and theoretical studies of the hysteretic microwave absorption (MWA) in the superconducting Bi2Sr 2CaCu2O8 thin films are presented. It has been found experimentally that the hysteresis loop manifests some unusual features such as the non-monotone hysteresis variation and the change of a hysteresis sign. We have shown that such unusual behavior is due to the special nature of the bulk pinning in a superconducting film with a thickness comparable with the field penetration depth. The theoretical model of the MWA hysteresis has been developed taking into account the inhomogeneous distribution of centers with different symmetry of a pinning potential and their variation with the magnetic field value. © Springer Science+Business Media, LLC 2006

    Localized charged states and phase separation near second order phase transition

    Full text link
    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain of the phase separated state is estimated. The role of the Coulomb interaction is elucidated

    Comparison of open femoral exposure and percutaneous access in endovascular reconstruction of the thoracic aorta: a two-center retrospective study

    Get PDF
    Aim. To analyze the efficacy and safety of the percutaneous transfemoral puncture technique for TEVAR (thoracis endovascular aortic repair).Material and methods. The retrospective study included 89 patients with aortic pathologies, for whom endovascular repair was performed: 51 patients (57%) with aortic dissection (type I DeBakey — 30 cases (58,8%) and type III — 21 (41,2%)), 38 (43%) patients with aortic aneurism. 82% of patients were male, the median age was 57 years (minimum age 17 years, maximum age 75 years). All patients were divided into two groups: in the first group (48 patients) endovascular aortic repair was performed under endotracheal anesthesia with open femoral exposure of the common femoral artery (CFA), in the second group (41 patients) — by percutaneous puncture method under local anesthesia. Technical and clinical aspects of procedures were analyzed.Results. Technical success of endovascular repair was achieved in 100% cases in both groups. The duration of the operation in the group with percutaneous access was statically significantly shorter (120 (94-150) minutes vs 87(60-120) minutes, p=0,001). Also, the time spent by patients in the intensive care unit and the period of hospitalization (18 (14-22) hours versus 1 (0-3) hours, p=0,001; 5 (4-6) days versus 4 (3-5) days, p=0,03) was shorter. In the open access group 2 (4,2%) patients developed access-related complications - acute thrombosis of the common femoral artery and hematoma of the postoperative wound, which required additional surgical aid - thrombectomy from the CFA, the second patient had evacuation of the hematoma of the postoperative wound. Cite-related complications in the second group were not observed. No major complications including neurological deficits and hospital mortality were observed in both groups.Conclusions. Thoracic endovascular aortic repair (TEVAR) using percutaneous access under local anesthesia in stable patients has proven to be safe and effective. The operation time is significantly reduced and this approach in most cases eliminates the need for the patient to stay in the intensive care unit in the early postoperative period. Possibility of early mobilization of the patient appears with reducing of the duration of hospitalization

    The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    Get PDF
    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of 20\sim 20 kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/EL/E behaviour, and distinguishing effects arising from δCP\delta_{CP} and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least 3σ3\sigma for 50\% of the true values of δCP\delta_{CP} with a 20 kton detector. With a far detector of 70 kton, the combination allows a 3σ3\sigma sensitivity for 75\% of the true values of δCP\delta_{CP} after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure

    Building the impedance model of a real machine

    Get PDF
    A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider). The main phases to create a realistic impedance model, and verify it experimentally, will be reviewed, highlighting the main challenges. Some examples will be presented revealing the levels of precision of machine impedance models that have been achieved
    corecore