60 research outputs found

    Spin light emitting diode based on exciton fine structure tuning in quantum dots

    Full text link
    We propose a concept of quantum dot based light emitting diode that produces circularly polarized light due to the tuning of the exciton fine structure by magnetic field and electron nuclear hyperfine interaction. The device operates under injection of electrons and holes from nonmagnetic contacts in a small field of the order of milliteslas. Its size can be parametrically smaller than the light wavelength, and circular polarization degree of electroluminescence can reach 100%. The proposed concept is compatible with the micropillar cavities, which allows for the deterministic electrical generation of single circularly polarized photons.Comment: 6+4 pages, 3+1 figure

    Optical orientation and alignment of excitons in direct and indirect band gap (In,Al)As/AlAs quantum dots with type-I band alignment

    Get PDF
    The spin structure and spin dynamics of excitons in an ensemble of (In,Al)As/AlAs quantum dots (QDs) with type-I band alignment, containing both direct and indirect band gap dots, are studied. Time-resolved and spectral selective techniques are used to distinguish between the direct and indirect QDs. The exciton fine structure is studied by means of optical alignment and optical orientation techniques in magnetic fields applied in the Faraday or Voigt geometries. A drastic difference in emission polarization is found for the excitons in the direct QDs involving a Γ\Gamma-valley electron and the excitons in the indirect QDs contributed by an XX-valley electron. We show that in the direct QDs the exciton spin dynamics is controlled by the anisotropic exchange splitting, while in the indirect QDs it is determined by the hyperfine interaction with nuclear field fluctuations. The anisotropic exchange splitting is determined for the direct QD excitons and compared with model calculations

    Optical orientation and alignment of excitons in direct and indirect band gap (In,Al)As/AlAs quantum dots with type-I band alignment

    Full text link
    The spin structure and spin dynamics of excitons in an ensemble of (In,Al)As/AlAs quantum dots (QDs) with type-I band alignment, containing both direct and indirect band gap dots, are studied. Time-resolved and spectral selective techniques are used to distinguish between the direct and indirect QDs. The exciton fine structure is studied by means of optical alignment and optical orientation techniques in magnetic fields applied in the Faraday or Voigt geometries. A drastic difference in emission polarization is found for the excitons in the direct QDs involving a Γ\Gamma-valley electron and the excitons in the indirect QDs contributed by an XX-valley electron. We show that in the direct QDs the exciton spin dynamics is controlled by the anisotropic exchange splitting, while in the indirect QDs it is determined by the hyperfine interaction with nuclear field fluctuations. The anisotropic exchange splitting is determined for the direct QD excitons and compared with model calculations

    Dynamic polarization of electron spins interacting with nuclei in semiconductor nanostructures

    Full text link
    We suggest a new spin orientation mechanism for localized electrons: dynamic electron spin polarization provided by nuclear spin fluctuationsdynamic~electron~spin~polarization~provided~by~nuclear~spin~fluctuations. The angular momentum for the electrons is gained from the nuclear spin system via the hyperfine interaction in a weak magnetic field. For this the sample is illuminated by an unpolarized light, which directly polarizes neither the electrons nor the nuclei. We predict, that for the electrons bound in localized excitons 100% spin polarization can be reached in longitudinal magnetic fields of a few millitesla. The proof of principle experiment is performed on momentum-indirect excitons in (In,Al)As/AlAs quantum dots, where in a magnetic field of 17 mT the electron spin polarization of 30% is measured.Comment: 6+9 pages, 3+9 figure

    Spin dynamics and magnetic-field-induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    Full text link
    The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic-field-induced circular polarization of photoluminescence, PcP_c, is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behaviour of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole gg factor, ghh=+3.5g_{hh}=+3.5, and the spin relaxation times of electron, τse=33 μ\tau_{se} = 33~\mus, and hole, τsh=3 μ\tau_{sh} = 3~\mus, bound in the exciton.Comment: 17 pages, 16 figure

    Influence of the heterointerface sharpness on exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap

    Full text link
    The dynamics of exciton recombination in an ensemble of indirect band-gap (In,Al)As/AlAs quantum dots with type-I band alignment is studied. The lifetime of confined excitons which are indirect in momentum-space is mainly influenced by the sharpness of the heterointerface between the (In,Al)As quantum dot and the AlAs barrier matrix. Time-resolved photoluminescence experiments and theoretical model calculations reveal a strong dependence of the exciton lifetime on the thickness of the interface diffusion layer. The lifetime of excitons with a particular optical transition energy varies because this energy is obtained for quantum dots differing in size, shape and composition. The different exciton lifetimes, which result in photoluminescence with non-exponential decay obeying a power-law function, can be described by a phenomenological distribution function, which allows one to explain the photoluminescence decay with one fitting parameter only.Comment: 10 pages, 7 figure

    Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots

    Get PDF
    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device

    Dynamic Polarization of Electron Spins in Indirect Band Gap (In,Al)As/AlAs Quantum Dots in a Weak Magnetic Field: Experiment and Theory

    Full text link
    A novel spin orientation mechanism - dynamic electron spin polarization - has been recently suggested in Phys. Rev. Lett. 125, 156801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.156801. It takes place for unpolarized optical excitation in weak magnetic fields of the order of a few millitesla. In this paper we demonstrate experimentally and theoretically that the dynamic electron spin polarization degree changes sign as a function of time, strength of the applied magnetic field, and its direction. The studies are performed on indirect band-gap (In,Al)As/AlAs quantum dots and their results are explained in the framework of a theoretical model developed for our experimental setting. © 2021 American Physical Society.We thank M. M. Glazov and M. O. Nestoklon for fruitful discussions. The experimental part of this research has been supported by the Deutsche Forschungsgemeinschaft (Grant No. 409810106) and by the Russian Foundation for Basic Research (Grant Nos. 19-52-12001 and 19-02-00098). M.B. acknowledges the support by the Deutsche Forschungsgemeinschaft (ICRC TRR 160, project A01). The theoretical studies by D.S.S. were supported by the RF President Grant No. MK-5158.2021.1.2, the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS,” and the Russian Foundation for Basic Research Grant Nos. 19-52-12054 and 20-32-70048. The theoretical studies by A.V.S. were supported by the Russian Foundation for Basic Research Grant No. 19-02-00184

    Spin-flip Raman scattering of the Γ\Gamma-X mixed exciton in indirect band-gap (In,Al)As/AlAs quantum dots

    Full text link
    The band structure of type-I (In,Al)As/AlAs quantum dots with band gap energy exceeding 1.63 eV is indirect in momentum space, leading to long-lived exciton states with potential applications in quantum information. Optical access to these excitons is provided by mixing of the Γ\Gamma- and X-conduction band valleys, from which control of their spin states can be gained. This access is used here for studying the exciton spin-level structure by resonant spin-flip Raman scattering, allowing us to accurately measure the anisotropic hole and isotropic electron gg factors. The spin-flip mechanisms for the indirect exciton and its constituents as well as the underlying optical selection rules are determined. The spin-flip intensity is a reliable measure of the strength of Γ\Gamma-X-valley mixing, as evidenced by both experiment and theory.Comment: 5 pages, 3 figure

    Semiconductor A3B5 nanostructures for infrared femtosecond lasers

    Get PDF
    Two techniques were suggested and tested for the recovery time shortening of saturable absorbers on a base of A3B5 compounds including quantum wells. The first one, proposed by authors, is the sample post-growth treatment by UV laser radiation; it implied generation of point defects, which, in its turn, led to electron-hole recombination acceleration and to recovery time shortening by an order of magnitude and more. Another technique based on special design of barriers gave promising results for the fast saturable absorbers. Semiconductor mirrors designed for Yb3+:KY(WO4)2 infrared laser mode locking led to 115 fs stable modelocking regime with average power close to CW operation. Results on fast saturable absorbers for spectral region of 1500 nm are also presented
    corecore