34,328 research outputs found
Development of thermal stratification and destratification scaling concepts. Volume 1: Definition of thermal stratification scaling parameters and experimental investigations
The dimensionless parameters associated with the thermal stratification and pressure history of a heated container of liquid and its vapor were examined. The Modified Grashof number, the Fourier number, and an Interface number were parameterized using a single test liquid, Freon 113. Cylindrical test tanks with spherical dome end caps were built. Blanket heaters covered the tanks and thermocouples monitored the temperatures of the liquid, the ullage, the tank walls, and the foam insulation encapsulating the tank. A centrifuge was used for the 6 inch tank to preserve the same scaling parameter values between it and the larger tanks. Tests were conducted over a range of Gr* values and the degree of scaling was checked by comparing the dimensionless pressures and temperatures for each scaled pair of tests. Results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters. Some deviation was, however, found in the detailed temperature profiles between the scaled pairs of tests
Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond
Exposure to beams of low energy electrons (2 to 30 keV) in a scanning
electron microscope locally induces formation of NV-centers without thermal
annealing in diamonds that have been implanted with nitrogen ions. We find that
non-thermal, electron beam induced NV-formation is about four times less
efficient than thermal annealing. But NV-center formation in a consecutive
thermal annealing step (800C) following exposure to low energy electrons
increases by a factor of up to 1.8 compared to thermal annealing alone. These
observations point to reconstruction of nitrogen-vacancy complexes induced by
electronic excitations from low energy electrons as an NV-center formation
mechanism and identify local electronic excitations as a means for spatially
controlled room-temperature NV-center formation
Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfv\'enic turbulence
We investigate properties of the plasma fluid motion in the large amplitude
low frequency fluctuations of highly Alfv\'enic fast solar wind. We show that
protons locally conserve total kinetic energy when observed from an effective
frame of reference comoving with the fluctuations. For typical properties of
the fast wind, this frame can be reasonably identified by alpha particles,
which, owing to their drift with respect to protons at about the Alfv\'en speed
along the magnetic field, do not partake in the fluid low frequency
fluctuations. Using their velocity to transform proton velocity into the frame
of Alfv\'enic turbulence, we demonstrate that the resulting plasma motion is
characterized by a constant absolute value of the velocity, zero electric
fields, and aligned velocity and magnetic field vectors as expected for
unidirectional Alfv\'enic fluctuations in equilibrium. We propose that this
constraint, via the correlation between velocity and magnetic field in
Alfv\'enic turbulence, is at the origin of the observed constancy of the
magnetic field: while the constant velocity corresponding to constant energy
can be only observed in the frame of the fluctuations, the correspondingly
constant total magnetic field, invariant for Galilean transformations, remains
the observational signature, in the spacecraft frame, of the constant total
energy in the Alfv\'en turbulence frame.Comment: 6 pages, 6 figures, Accepted for publication in The Astrophysical
Journa
MeV oxygen ion implantation induced compositional intermixing in AlAs/GaAs superlattices
We present in this letter an investigation of compositional intermixing in AlAs/GaAs superlattices induced by 2 MeV oxygen ion implantation. The results are compared with implantation at 500 keV. In addition to Al intermixing in the direct lattice damage region by nuclear collision spikes, as is normally present in low-energy ion implantation, Al interdiffusion has also been found to take place in the subsurface region where MeV ion induced electronic spike damage dominates and a uniform strain field builds up due to defect generation and diffusion. Uniform compositional intermixing of the superlattices results after subsequent thermal annealing when Al interdiffusion is stimulated through recovery of the implantation-induced lattice strain field, the reconstruction and the redistribution of lattice defects, and annealing of lattice damage
Recommended from our members
Early time dynamics of laser-ablated silicon using ultrafast grazing incidence X-ray scattering
Controlling the morphology of laser-derived nanomaterials is dependent on developing a better understanding of the particle nucleation dynamics in the ablation plume. Here, we utilize the femtosecond-length pulses from an x-ray free electron laser to perform time-resolved grazing incidence x-ray scattering measurements on a laser-produced silicon plasma plume. At 20 ps we observe a dramatic increase in the scattering amplitude at small scattering vectors, which we attribute to incipient formation of liquid silicon droplets. These results demonstrate the utility of XFELs as a tool for characterizing the formation dynamics of nanomaterials in laser-produced plasma plumes on ultrafast timescales
Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals
A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals
The nature of the long time decay at a second order transition point
We show that at a second order phase transition, of \phi^4 like system, a
necessary condition for streched exponential decay of the time structure factor
is obeyed. Using the ideas presented in this proof a crude estimate of the
decay of the structure factor is obtained and shown to yield stretched
exponential decay under very reasonable conditions.Comment: 7 page
Temporal Correlations and Persistence in the Kinetic Ising Model: the Role of Temperature
We study the statistical properties of the sum , that is the difference of time spent positive or negative by the
spin , located at a given site of a -dimensional Ising model
evolving under Glauber dynamics from a random initial configuration. We
investigate the distribution of and the first-passage statistics
(persistence) of this quantity. We discuss successively the three regimes of
high temperature (), criticality (), and low temperature
(). We discuss in particular the question of the temperature
dependence of the persistence exponent , as well as that of the
spectrum of exponents , in the low temperature phase. The
probability that the temporal mean was always larger than the
equilibrium magnetization is found to decay as . This
yields a numerical determination of the persistence exponent in the
whole low temperature phase, in two dimensions, and above the roughening
transition, in the low-temperature phase of the three-dimensional Ising model.Comment: 21 pages, 11 PostScript figures included (1 color figure
All-Optical Depletion of Dark Excitons from a Semiconductor Quantum Dot
Semiconductor quantum dots are considered to be the leading venue for
fabricating on-demand sources of single photons. However, the generation of
long-lived dark excitons imposes significant limits on the efficiency of these
sources. We demonstrate a technique that optically pumps the dark exciton
population and converts it to a bright exciton population, using intermediate
excited biexciton states. We show experimentally that our method considerably
reduces the DE population while doubling the triggered bright exciton emission,
approaching thereby near-unit fidelity of quantum dot depletion.Comment: 5 pages, 3 figure
Diversidade, sÃndromes de dispersão e formas de vida vegetal em diferentes estágios sucessionais de florestas secundárias em Tomé-Açu, Pará, Brasil.
Florestas secundárias (capoeiras) são formas de vegetação resultantes de processos sucessionais determinados pelo histórico de uso da terra, distância de florestas primárias bem como fatores estocásticos. O estágio sucessional pode indicar quais as formas de vida vegetal e as sÃndromes de dispersão dominantes no ambiente. Neste estudo foram avaliados: uma floresta primária (controle) e florestas secundárias de 25, 10 e 5 anos no municÃpio de Tomé-Açu, Pará, Brasil. A primeira apresentou 224 espécies e a floresta secundária de cinco anos teve 91, a menor quantidade. O número de espécies diferiu entre ambientes (χ2 = 59,6; p <0,001), mas não a quantidade de famÃlias (χ2 = 3,6; p = 0,305). O Ãndice de Shannon-Weaner foi alto para todas as florestas, exceto para a capoeira de cinco anos. A distribuição de formas de vida e as sÃndromes de dispersão diferiram para todas as capoeiras quando comparadas com as distribuições observadas na floresta primária. As formas arbustivas predominaram na capoeira de cinco anos e as arbóreas nas demais. As espécies zoocóricas foram as mais frequentes, enquanto que as autocóricas e hidrocóricas as mais comuns na floresta primária. Devido à s boas condições de diversidade das florestas secundárias de Tomé-Açu, sugerimos ações para um manejo florestal sustentável visando retornos econômicos e a conservação destes ambientes
- …