862 research outputs found

    Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Get PDF
    Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11) og heterozygositeten var tilsvarende høy med en middelverdi på 0.749. Denne høye graden av genetisk variasjon i alle undersøkte populasjoner indikerer at det ikke foregår mye innavl blant rein i Skandinavia. Utbredelsen av de enkelte allelene viste høy grad av genetisk oppdeling i transferrin-locuset mellom flokker av både tamrein og villrein. Middelverdien for genetisk avstand var 0.069 mellom tamreinflokker og 0.091 mellom villreinflokker. Særlig stor genetisk avstand (middelverdi 0.188) ble funnet mellom tamrein og villrein. Denne store forskjellen skyldes i stor grad forskjellig mønster i utbredelsen av de to vanligste allelene: Tf' var mest vanlig blant tamrein og Tf1' var mest vanlig blant villrein. Denne forskjellen er diskutert i relasjon til forskjellig opprinnelse av tamrein og villrein og alternativt, i relasjon til forskjellig seleksjonskrefter som virker på transferrin genotyper i tamrein og villrein

    Comparison between the first Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere

    No full text
    International audienceEmerging microwave satellite techniques are expected to provide improved global measurements of cloud ice mass. CloudSat, Aura MLS and Odin-SMR fall into this category and first cloud ice retrievals from these instruments are compared. The comparison is made for partial ice water columns above 12 km, following the SMR retrieval product. None of the instruments shows significant false cloud detections and a consistent view of the geographical distribution of cloud ice is obtained, but differences on the absolute levels exist. CloudSat gives the lowest values, with an overall mean of 2.12 g/m2. A comparable mean for MLS is 4.30 g/m2. This relatively high mean can be an indication of overestimation of the vertical altitude of cloud ice by the MLS retrievals. The vertical response of SMR has also some uncertainty, but this does not affect the comparison between MLS and CloudSat. SMR observations are sensitive to cloud inhomogeneities inside the footprint and some compensation is required. Results in good agreement with CloudSat, both in regard of the mean and probability density functions, are obtained for a weak compensation, while a simple characterisation of the effect indicates the need for stronger compensation. The SMR mean was found to be 1.89/2.62/4.10 g/m2 for no/selected/strongest compensation, respectively. Assumptions about the particle size distribution are a consideration for all three instruments, and constitute the dominating retrieval uncertainty for CloudSat. The comparison indicates a retrieval accuracy of about 40% (3.1±1.2 g/m2). This number is already very small compared to uncertainties of cloud ice parametrisation in atmospheric models, but can be decreased further through a better understanding of main retrieval error sources

    Numerical Studies of a Confocal Resonator Pick-Up with FEMLAB

    Get PDF
    Diagnostic devices aimed at measuring beam profiles in high intensity accelerators are often perturbed by microwave fields generated by the beam itself upstream of the detection device, which propagate inside the vacuum pipe. These parasitic waveguide modes can significantly reduce the signal-to-noise ratio and thus the sensitivity of the beam monitor. This warrants investigation of detection devices that are sensitive to the direct electromagnetic fields of the beam, but largely ignore the parasitic waveguide modes. A new pick-up based on a confocal resonator configuration situated transversely to the direction of propagation of the beam is currently under development at Uppsala University, Sweden. Since a confocal resonator can have a high quality factor for the diffraction losses, then reciprocity suggests that it only couples weakly to external fields while keeping anyway a significant coupling to the direct fields of the beam. Numerical simulations were performed with FEMLAB to better characterize the electromagnetic properties of a confocal resonator pick-up to be operated in the multi-GHz range, especially in terms of eigen-frequencies and coupling to external electromagnetic fields. Our results were then compared to analytical predictions and a good agreement was found, despite a few limitations in the computation of the resonant modes. Having recently built a first confocal resonator prototype, we also performed experimental cross-checks of our numerical studies with a microwave network analyzer. Our results are presented in detail in this report and we discuss further applications of the confocal resonator microwave pick-up

    Comparison between early Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere

    Get PDF
    International audienceEmerging microwave satellite techniques are expected to provide improved global measurements of cloud ice mass. CloudSat, Aura MLS and Odin-SMR fall into this category and early cloud ice retrievals from these instruments are compared. The comparison follows the SMR retrieval product and is made for partial ice water columns above 12 km. None of the retrievals shows a significant degree of false cloud detections, the ratio between local mean values from the instruments is fairly constant and a consistent view of the geographical distribution of cloud ice is obtained. However, important differences on the absolute levels exist, where the overall mean is 9.6, 4.2 and 3.7 g m?2 for CloudSat, SMR and MLS, respectively. Assumptions about the particle size distribution (PSD) are a consideration for all three instruments and constitute the dominating retrieval uncertainty for CloudSat. The mean for CloudSat when applying the same PSD as for MLS and SMR was estimated to 6.3 g m?2. A second main consideration for MLS and SMR are the effects caused by the poorer spatial resolution: a possible vertical misplacement of retrieved values and an impact of cloud inhomogeneities. The latter effect was found to be the dominating retrieval uncertainty for SMR, giving a possible mean value range of 2.3?8.9 g m?2. The comparison indicates a common retrieval accuracy in the order of 70%. Already this number should suffice for improved validations of cloud ice parametrisation schemes in atmospheric models, but a substantially better consistency between the datasets should be attainable through an increased understanding of main retrieval error sources

    Time to first recurrence, pattern of recurrence, and survival after recurrence in endometrial cancer according to the molecular classification.

    Get PDF
    OBJECTIVE Despite its generally favorable prognosis at primary diagnosis, recurrence of endometrial cancer remains an important clinical challenge. The aim of this study was to analyze the value of molecular classification in recurrent endometrial cancer. METHODS This study included patients with recurrent endometrial cancer who underwent primary surgical treatment between 2004 and 2015 at the Karolinska University Hospital, Sweden and the Bern University Hospital, Switzerland (KImBer cohort) with molecular classification of the primary tumor. RESULTS Out of 594 molecularly classified endometrial cancer patients, 101 patients experienced recurrence, consisting of 2 POLEmut, 33 MMRd, 30 p53abn, and 36 NSMP tumors. Mean age at recurrence was 71 years and mean follow-up was 54 months. Overall, median time to first recurrence was 16 months (95% CI 12-20); with the shortest median time in MMRd patients, with 13 months (95% CI 5-21). The pattern of recurrence was distinct among molecular subgroups: MMRd tumors experienced more locoregional, while p53abn cases showed more abdominal recurrences (P = .042). Median survival after recurrence was best for MMRd cases (43 months, 95% CI 11-76), compared to 39 months (95% CI 21-57) and 10 months (95% CI 7-13) for the NSMP and p53abn cases respectively (log-rank, P = .001). CONCLUSION Molecular classification is a significant indicator of survival after recurrence in endometrial cancer patients, and patterns of recurrence differ by molecular subgroups. While MMRd endometrial cancer show more locoregional recurrence and the best survival rates after recurrence, p53abn patients experience abdominal recurrence more often and had the worst prognosis of all recurrent patients

    Observational constraints on supermassive dark stars

    Get PDF
    Some of the first stars could be cooler and more massive than standard stellar models would suggest, due to the effects of dark matter annihilation in their cores. It has recently been argued that such objects may attain masses in the 10^4--10^7 solar mass range, and that such supermassive dark stars should be within reach of the upcoming James Webb Space Telescope. Notwithstanding theoretical difficulties with this proposal, we argue here that some of these objects should also be readily detectable with both the Hubble Space Telescope and ground-based 8--10 m class telescopes. Existing survey data already place strong constraints on 10^7 solar mass dark stars at z~10. We show that such objects must be exceedingly rare or short-lived to have avoided detection.Comment: 6 pages, 4 figures. v3: erratum incorporate

    Passive and active suicidal ideation in a population-based sample of older adults: Associations with polygenic risk scores of relevance for suicidal behavior

    Get PDF
    Introduction: There are few studies investigating genetic factors related to suicidal ideation or behavior in older adult populations. Our aim was to test associations between passive and active suicidal ideation and polygenic risk scores (PRSs) for suicidality and other traits of relevance for suicidality in old age (i.e. depression, neuroticism, loneliness, Alzheimer’s disease, cognitive performance, educational attainment, and several specified vascular diseases) in a population-based sample aged 70 years and older. / Methods: Participants in the prospective H70 study in Gothenburg, Sweden, took part in a psychiatric examination that included the Paykel questions on active and passive suicidal ideation. Genotyping was performed with the Neurochip (Illumina). After quality control of the genetic data the sample included 3467 participants. PRSs for suicidality and other related traits were calculated based on summary statistics from recent GWASs of relevance. Exclusion of persons with dementia or incomplete data on suicidal ideation yielded 3019 participants, age range 70–101 years. Associations between past year suicidal ideation (any level) and selected PRSs were analysed using general estimation equation (GEE) models, adjusted for sex and age. / Results: We observed associations between passive/active suicidal ideation and PRSs for depression (three versions), neuroticism, and general cognitive performance. After excluding individuals with current major depressive disorder (MDD), similar associations were seen with PRS for neuroticism, general cognitive performance and two PRSs for depression. No associations were found between suicidal ideation and PRSs for suicidality, loneliness, Alzheimer’s disease, educational attainment, or vascular disease. / Discussion: Our results could indicate which types of genetic susceptibility that are of importance for suicidality in old age, and these findings can help to shed light on potential mechanisms that may be involved in passive and active suicidal ideation in late-life, also in those with no current MDD. However, due to the limited sample size, the results need to be interpreted with caution until replicated in larger samples

    Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States

    Get PDF
    We study radial wave packets produced by short-pulsed laser fields acting on Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect theory. We begin with a time-dependent perturbative calculation for alkali-metal atoms, incorporating the atomic-excitation process. This provides insight into the general wave packet behavior and demonstrates agreement with conventional theory. We then obtain an alternative analytical description of a radial wave packet as a member of a particular family of squeezed states, which we call radial squeezed states. By construction, these have close to minimum uncertainty in the radial coordinates during the first pass through the outer apsidal point. The properties of radial squeezed states are investigated, and they are shown to provide a description of certain aspects of Rydberg atoms excited by short-pulsed laser fields. We derive expressions for the time evolution and the autocorrelation of the radial squeezed states, and we study numerically and analytically their behavior in several alkali-metal atoms. Full and fractional revivals are observed. Comparisons show agreement with other theoretical results and with experiment.Comment: published in Physical Review

    Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells

    Get PDF
    The recent advent of two-dimensional monolayer materials with tunable optoelectronic properties and high carrier mobility offers renewed opportunities for efficient, ultra-thin excitonic solar cells alternative to those based on conjugated polymer and small molecule donors. Using first-principles density functional theory and many-body calculations, we demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with commonly used acceptors such as PCBM fullerene or semiconducting carbon nanotubes can provide excitonic solar cells with tunable absorber gap, donor-acceptor interface band alignment, and power conversion efficiency, as well as novel device architectures. For the case of CBN-PCBM devices, we predict the limit of power conversion efficiencies to be in the 10 - 20% range depending on the CBN monolayer structure. Our results demonstrate the possibility of using monolayer materials in tunable, efficient, polymer-free thin-film solar cells in which unexplored exciton and carrier transport regimes are at play.Comment: 7 pages, 5 figure
    • …
    corecore