458 research outputs found

    Non-spiky density of states of an icosahedral quasicrystal

    Full text link
    The density of states of the ideal three-dimensional Penrose tiling, a quasicrystalline model, is calculated with a resolution of 10 meV. It is not spiky. This falsifies theoretical predictions so far, that spikes of width 10-20 meV are generic for the density of states of quasicrystals, and it confirms recent experimental findings. The qualitative difference between our results and previous calculations is partly explained by the small number of k points that has usually been included in the evaluation of the density of states of periodic approximants of quasicrystals. It is also shown that both the density of states of a small approximant of the three-dimensional Penrose tiling and the density of states of the ideal two-dimensional Penrose tiling do have spiky features, which also partly explains earlier predictions.Comment: 8 pages, 4 figures. Changes in this version: longer introduction, details of figures shown in inset

    Aligned Spins: Orbital Elements, Decaying Orbits, and Last Stable Circular Orbit to high post-Newtonian Orders

    Full text link
    In this article the quasi-Keplerian parameterisation for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity type variable xx.Comment: 30 pages, 2 figures, v2: update to match published versio

    Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding

    Get PDF
    The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, HHF investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means

    Exact Eigenstates of Tight-Binding Hamiltonians on the Penrose Tiling

    Full text link
    We investigate exact eigenstates of tight-binding models on the planar rhombic Penrose tiling. We consider a vertex model with hopping along the edges and the diagonals of the rhombi. For the wave functions, we employ an ansatz, first introduced by Sutherland, which is based on the arrow decoration that encodes the matching rules of the tiling. Exact eigenstates are constructed for particular values of the hopping parameters and the eigenenergy. By a generalized ansatz that exploits the inflation symmetry of the tiling, we show that the corresponding eigenenergies are infinitely degenerate. Generalizations and applications to other systems are outlined.Comment: 24 pages, REVTeX, 13 PostScript figures include

    Post-Newtonian Freely Specifiable Initial Data for Binary Black Holes in Numerical Relativity

    Full text link
    Construction of astrophysically realistic initial data remains a central problem when modelling the merger and eventual coalescence of binary black holes in numerical relativity. The objective of this paper is to provide astrophysically realistic freely specifiable initial data for binary black hole systems in numerical relativity, which are in agreement with post-Newtonian results. Following the approach taken by Blanchet, we propose a particular solution to the time-asymmetric constraint equations, which represent a system of two moving black holes, in the form of the standard conformal decomposition of the spatial metric and the extrinsic curvature. The solution for the spatial metric is given in symmetric tracefree form, as well as in Dirac coordinates. We show that the solution differs from the usual post-Newtonian metric up to the 2PN order by a coordinate transformation. In addition, the solutions, defined at every point of space, differ at second post-Newtonian order from the exact, conformally flat, Bowen-York solution of the constraints.Comment: 41 pages, no figures, accepted for publication in Phys. Rev. D, significant revision in presentation (including added references and corrected typos

    Energy spectra, wavefunctions and quantum diffusion for quasiperiodic systems

    Full text link
    We study energy spectra, eigenstates and quantum diffusion for one- and two-dimensional quasiperiodic tight-binding models. As our one-dimensional model system we choose the silver mean or `octonacci' chain. The two-dimensional labyrinth tiling, which is related to the octagonal tiling, is derived from a product of two octonacci chains. This makes it possible to treat rather large systems numerically. For the octonacci chain, one finds singular continuous energy spectra and critical eigenstates which is the typical behaviour for one-dimensional Schr"odinger operators based on substitution sequences. The energy spectra for the labyrinth tiling can, depending on the strength of the quasiperiodic modulation, be either band-like or fractal-like. However, the eigenstates are multifractal. The temporal spreading of a wavepacket is described in terms of the autocorrelation function C(t) and the mean square displacement d(t). In all cases, we observe power laws for C(t) and d(t) with exponents -delta and beta, respectively. For the octonacci chain, 0<delta<1, whereas for the labyrinth tiling a crossover is observed from delta=1 to 0<delta<1 with increasing modulation strength. Corresponding to the multifractal eigenstates, we obtain anomalous diffusion with 0<beta<1 for both systems. Moreover, we find that the behaviour of C(t) and d(t) is independent of the shape and the location of the initial wavepacket. We use our results to check several relations between the diffusion exponent beta and the fractal dimensions of energy spectra and eigenstates that were proposed in the literature.Comment: 24 pages, REVTeX, 10 PostScript figures included, major revision, new results adde
    • …
    corecore