390 research outputs found

    Studies on energy transformation in the freshwater snail Pila globosa 1. Influence of feeding rate

    Get PDF
    The effects of eleven chosen feeding levels ranging from 0 to 198 mg damp dry (plant) Ceratophyllumlg live snail /day on the absorption, conversion and metabolism of the snail Pi/a globosa (of 1•9 g body weight) have been studied. Absorption rates increased from 3•0 to 21•0 mg dry food /g live snail/day in snails fed 3-4-28'8 mg dry food/ g live snail/day. In these snails, absorption efficiency decreased from 87•5 to 73•0 %

    Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    Get PDF
    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Gene products and processes contributing to lanthanide homeostasis and methanol metabolism in \u3cem\u3eMethylorubrum extorquens\u3c/em\u3e AM1

    Get PDF
    Lanthanide elements have been recently recognized as “new life metals” yet much remains unknown regarding lanthanide acquisition and homeostasis. In Methylorubrum extorquens AM1, the periplasmic lanthanide-dependent methanol dehydrogenase XoxF1 produces formaldehyde, which is lethal if allowed to accumulate. This property enabled a transposon mutagenesis study and growth studies to confirm novel gene products required for XoxF1 function. The identified genes encode an MxaD homolog, an ABC-type transporter, an aminopeptidase, a putative homospermidine synthase, and two genes of unknown function annotated as orf6 and orf7. Lanthanide transport and trafficking genes were also identified. Growth and lanthanide uptake were measured using strains lacking individual lanthanide transport cluster genes, and transmission electron microscopy was used to visualize lanthanide localization. We corroborated previous reports that a TonB-ABC transport system is required for lanthanide incorporation to the cytoplasm. However, cells were able to acclimate over time and bypass the requirement for the TonB outer membrane transporter to allow expression of xoxF1 and growth. Transcriptional reporter fusions show that excess lanthanides repress the gene encoding the TonB-receptor. Using growth studies along with energy dispersive X-ray spectroscopy and transmission electron microscopy, we demonstrate that lanthanides are stored as cytoplasmic inclusions that resemble polyphosphate granules

    Asymptotic Safety, Emergence and Minimal Length

    Full text link
    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that 1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and 2) there is a sense in which asymptotic safety implies a minimal length. In so doing we also discuss possible signatures of asymptotic safety in scattering experiments.Comment: LaTEX, 20 pages, 2 figures; v.2: minor changes, reflecting published versio

    A rehabilitation intervention to improve recovery after an episode of delirium in adults over 65 years (RecoverED): study protocol for a multi-centre, single-arm feasibility study

    Get PDF
    Background: Delirium affects over 20% of all hospitalised older adults. Delirium is associated with a number of adverse outcomes following hospital admission including cognitive decline, anxiety and depression, increased mortality and care needs. Previous research has addressed prevention of delirium in hospitals and care homes, and there are guidelines on short-term treatment of delirium during admission. However, no studies have addressed the problem of longer-term recovery after delirium and it is currently unknown whether interventions to improve recovery after delirium are effective and cost-effective. The primary objective of this feasibility study is to test a new, theory-informed rehabilitation intervention (RecoverED) in older adults delivered following a hospital admission complicated by delirium to determine whether (a) the intervention is acceptable to individuals with delirium and (b) a definitive trial and parallel economic evaluation of the intervention are feasible. Methods: The study is a multi-centre, single-arm feasibility study of a rehabilitation intervention with an embedded process evaluation. Sixty participants with delirium (aged > 65 years old) and carer pairs will be recruited from six NHS acute hospitals across the UK. All pairs will be offered the intervention, with follow-up assessments conducted at 3 months and 6 months post-discharge home. The intervention will be delivered in participants’ own homes by therapists and rehabilitation support workers for up to 10 intervention sessions over 12 weeks. The intervention will be tailored to individual needs, and the chosen intervention plan and goals will be discussed and agreed with participants and carers. Quantitative data on reach, retention, fidelity and dose will be collected and summarised using descriptive statistics. The feasibility outcomes that will be used to determine whether the study meets the criteria for progression to a definitive randomised controlled trial (RCT) include recruitment, delivery of the intervention, retention, data collection and acceptability of outcome measures. Acceptability of the intervention will be assessed using in-depth, semi-structured qualitative interviews with participants and healthcare professionals. Discussion: Findings will inform the design of a pragmatic multi-centre RCT of the effectiveness and cost-effectiveness of the RecoverED intervention for helping the longer-term recovery of people with delirium compared to usual care. Trial registration: The feasibility study was registered: ISRCTN1567657

    DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts

    Get PDF
    Replication origins in Xenopus egg extracts are located at apparently random sequences but are activated in clusters that fire at different times during S phase under the control of ATR/ATM kinases. We investigated whether chromosomal domains and single sequences replicate at distinct times during S phase in egg extracts. Replication foci were found to progressively appear during early S phase and foci labelled early in one S phase colocalized with those labelled early in the next S phase. However, the distribution of these two early labels did not coincide between single origins or origin clusters on single DNA fibres. The 4 Mb Xenopus rDNA repeat domain was found to replicate later than the rest of the genome and to have a more nuclease-resistant chromatin structure. Replication initiated more frequently in the transcription unit than in the intergenic spacer. These results suggest for the first time that in this embryonic system, where transcription does not occur, replication timing is deterministic at the scale of large chromatin domains (1–5 Mb) but stochastic at the scale of replicons (10 kb) and replicon clusters (50–100 kb)

    Nonparametric methods for analyzing replication origins in genomewide data

    Get PDF
    Due to the advent of high-throughput genomic technology, it has become possible to monitor cellular activities on a genomewide basis. With these new methods, scientists can begin to address important biological questions. One such question involves the identification of replication origins, which are regions in the chromosomes where DNA replication is initiated. One hypothesis is that their locations are nonrandom throughout the genome. In this article, we analyze data from a recent yeast study in which candidate replication origins were profiled using cDNA microarrays to test this hypothesis. We find no evidence for such clustering.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47937/1/10142_2004_Article_122.pd
    corecore