brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by Collection Of Biostatistics Research Archive

University of Michigan School of Public
Health

The University of Michigan Department of Biostatistics Working
Paper Series

Year 2004 Paper 32

Nonparametric methods for analyzing
replication origins in genomewide data

Debashis Ghosh*

*University of Michigan, ghoshd @psu.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-

cially reproduced without the permission of the copyright holder.
http://biostats.bepress.com/umichbiostat/paper32
Copyright (©)2004 by the author.


https://core.ac.uk/display/61318936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Nonparametric methods for analyzing
replication origins in genomewide data

Debashis Ghosh

Abstract

Due to the advent of high-throughput genomic technology, it has become pos-
sible to globally monitor cellular activities on a genomewide basis. With these
new methods, scientists can begin to address important biological questions. One
such question involves the identification of replication origins, which are regions
in chromosomes where DNA replication is initiated. In addition, one hypothesis
regarding replication origins is that their locations are non-random throughout the
genome. In this article, we develop methods for identification of and cluster in-
ference regarding replication origins involving genomewide expression data. We
compare several nonparametric regression methods for the identification of repli-
cation origin locations. Testing the hypothesis of randomness of these locations
is done using Kolmogorov-Smirnov and scan statistics. The methods are applied
to data from a recent study in yeast in which candidate replication origins were
profiled using cDNA microarrays.
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Abstract

Due to the advent of high-throughput genomic technology, it has become possible to
monitor cellular activities on a genomewide basis. With these new methods, scien-
tists can begin to address important biological questions. One such question involves
the identification of replication origins, which are regions in the chromosomes where
DNA replication is initiated. One hypothesis is that their locations are nonrandom
throughout the genome. In this article, we develop methods for identification of and
cluster inference regarding replication origins involving genomewide expression data.
We compare several nonparametric regression methods for the identification of replica-
tion origin locations. Testing the hypothesis of randomness of these locations is done
using Kolmogorov-Smirnov and scan statistics. The methods are applied to data from
a recent yeast study in which candidate replication origins were profiled using cDNA

microarrays.

Keywords: Changepoint, Density Estimation, Derivative Estimation, Gene Expression,

Kernel Smoothing, Microarray.
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1 Introduction

With the explosion of high-throughput genomic data, scientists are now in the position
of having the genetic information available for addressing important biological ques-
tions. The types of genomic data that are available range from sequences of complete
organisms (Venter et al., 2001) to gene expression profiles from microarray experiments
(Tusher et al., 2001) to protein-protein interaction maps (Uetz et al., 2000).

One question involves the existence and location of replication origins. The biology
underlying this problem is further detailed in Section 2. A replication origin is the site
on the genome where cell replication is initiated; identification of these locations is of
great importance to understanding DNA replication. Recently, two global-wide studies
attempting to identify replication origins in yeast were reported (Raghuraman et al.,
2001; Wyrick et al., 2001). In this paper, we focus on the study of Raghuraman et al.
(2001). A major statistical goal is to identify the chromosomal locations of peaks in
the expression profiles. An example of such a profile is given in Figure 1.

The statistical analysis of replication origins has been previously considered by
Truong et al. (2002), but they were not dealing with the situation of analyzing
genomewide data. In addition, they had experimental replicates. In most high-
throughput studies, replicates are not available. In addition, while Truong et al. (2002)
were interested in finding one replication origin, we are now performing a global search
for finding multiple sites of replications. It is generally accepted that in the yeast
genome, there are approximately 200-400 sites of replication origins. Statistically, the
problem addressed here is that of finding local modes. While there exists a literature
on such procedures (Silverman, 1981; Miiller and Sawitzki, 1991; Cheng and Hall, 1998;
Fisher and Marron, 2001), they tend to deal with the issue of number of modes in con-
trast to identification of local modes. In addition, most of these methods will not be
computationally feasible for finding modes because they would require nonparametric
smoothing for multiple values of the smoothing parameter.

In this article, we use nonparametric regression methods to infer the locations of
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replication origins and nonparametric clustering techniques to test the hypothesis of
clustering of replication origins. Section 2 provides more details on the biology of
replication origins and describe the experiment by Raghuraman et al. (2001). A sta-
tistical model for the analysis of the expression profiles and methods for identification
of replication origins are given in Section 3. This section also describes nonparametric
methods for assessing clustering. The proposed methodology is applied to the yeast
data of Raghuraman et al. (2001) in Section 4. Finally, we conclude with some discus-

sion in Section 5.

2 Biological Background

We now provide a brief review of DNA replication and origins of replications; more
comprehensive discussions can be found in Gilbert (2001), Newlon and Theis (2002),
and Bell and Dutta (2002).

Complete and accurate DNA replication is integral to the maintenance of the genetic
integrity of all organisms (Bell and Dutta, 2002). In eukaryotic cells, replication begins
at chromosomal elements called replication origins. At these locations, multiprotein
complexes are assembled that eventually become two bidirectional replication forks. We
will focus our discussion here on yeast, as this was the organism studied by Raghuraman
et al. (2001). Potential locations for replication origins in yeast contain elements known
as autonomously replicating sequences (ARS). These sequences are 100-200 base pairs
(bp) in length and contain one or more copies of an 11-bp ARS consensus sequence
(ACS) (Newlon and Theis, 2002). The protein that initiates replication is called the
origin recognition complex (ORC). The ORC binds in vivo to multiple ARS throughout
the cell cycle. Then a prereplication complex (pre-RC) forms that regulates replication.
The pre-RC formation occurs during the G1 phase of the cell cycle. After it is formed,
it then awaits activation by kinases that trigger the replication process. Each of these
steps involves an ordered series of assembly of various transcription factors and other
proteins.

Numerous biological experiments have studied various properties of replication ori-

4
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gins. However, until recently, no experiments have studied these properties on a
genomewide basis. This is due to the fact that the plasmid assay typically used to
identify ARS elements is highly labor-intensive (Stinchcomb et al., 1979). In a recent
study by Raghuraman et al. (2001), oligonucleotide microarrays were used to identify
potential origins of replications. Density transfer experiments were used to measure
replication times for each of the probes. Yeast cells were grown for many genera-
tions in medium containing two dense isotopes (!°N and 3C); they were blocked at
the G1-S phase boundary and then released into medium containing the isotopes *N
and 2C. At times ¢t = 0,10, 14,19, 25, 33,44 and 60 minutes in the S phase, culture
samples were collected. The replicated DNA containing one heavy and one light (HL)
strand (for the parent and daughter strands) were separated from the unreplicated
DNA (which contained two heavy (HH) strands) was separated for each time point
using density gradient centrifugation. Each set of DNA was then separately hybridized
to an oligonucleotide microarray, which yielded an intensity measure. On the microar-
ray, each probeset corresponded to a different genomic location in the yeast genome.
The genomic locations used were evenly spaced for each chromosome. The intensity
measure is then representative of the fraction of each sequence that had replicated at
each time point.

The relationship of HL/HH strands as a function of chromosome position is illus-
trated in Figure 1. Early replicating sequences have higher HL fractions at earlier time
points, while later replicating sequences have lower HL fractions. By considering the
fraction of HL over all times points to the fraction of both HL. and HH across all time
points, we have a proxy measure for the time of replication. The microarray data in
this yield a value for the HL. percentage.

The authors applied a Fourier convolution smoothing algorithm to the microarray
data; these are the data that we will consider in this paper. The measurements can then
be plotted as a function of chromosome location; we present an example of the data
in Figure 2. Based on these data, the goal is to find the local peaks and valleys in the

data. Peaks represent replication origins, while valleys represent regions of replication
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termination. Here and in the sequel, we will focus only on replication origins.

The authors calculated peaks and valleys using successive differences and then de-
fined robust origins of replications as those origins that survive nine rounds of smooth-
ing. The choice of nine seems relatively ad hoc; our goal is to develop a more formal
statistical method for identifying replication origins. In addition, we wish to test the

hypothesis of Gilbert (2001) that the location of origins of replication is nonrandom.

3 Experimental Methods
3.1 Data and Model

We observe the data {Y;;}, ¢ =1,...,1, j = 1,...,n;, where 7 indexes the chromo-
some, j indexes the location on the sth chromosome, and Y;; is the corresponding
expression measurement. We then formulate the following model for Y;; as a function
of chromosome location:

Yij = mi(j/mi) + €5, (1)
where f;(t) is the mean function for the ith chromosome and ¢;; is a noise term. We
assume that the error terms in (1) are a random sample from a normal distribution
with mean zero and variance o2, ¢ = 1,...,I. We will be treating each chromosome

2 on 7 in the sequel. In

separately, so we will suppress dependence on of y; and o
addition, we will assume that n; = n. Because of the experimental design of the study
by Raghuraman et al. (2001), the points t1, ..., t,, where t; = (i — 1)/(n — 1), will be
treated as arising from a equispaced, fixed design setting.

Based on Figure 1, replication origins correspond to local peaks in regions of the
curve, while replication termination locations are valleys in the profile. Note that peaks
and valleys in the curves will be points where the first derivative of the function is zero.
Other situations in which the derivatives of a function are of interest have been given
by Gasser et al. (1984) and Song et al. (1995).

Our approach will be to use nonparametric smoothing techniques to estimate p. We

will compare three methods: kernel regression, local weighted polynomial smoothing,
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and smoothing splines. Define u(*¥) to be the kth derivative of . Based on the estimates
of u™® and p?, the zero-crossings of u) where u® < 0 correspond to candidate
replication origins. We will then develop a statistic for assessing clustering of replication

origin locations.

3.2 Kernel estimation

One method of estimation of p is the ordinary kernel regression estimator (Jones,

Sheather and Marron, 1996)

i) = 5 D Viau(s ), @)

gi(t;b)z/l W(t_bu> du,

si = (ti + tiv1)/2, W is the kernel function and b is the bandwidth. Recall that

where

we are using a fixed design for ¢; this reflects the experimental design with respect
to the chromosome positions in the study of Raghuraman et al. (2001). By simple

differentiation, the estimator of the derivatives of p, u*)(¢) is given by

n

) 1
AR(E0) = 5> YigP (1:0), (3)

i=1

where ggk)(t; b) = f;él W®{(t — u)/b}du is the kth derivative of g;(t;b) with respect
of t.

A major issue in the construction of kernel estimates for x(!) and p(® is the choice
of bandwidth, b. As suggested by Jones, Sheather and Marron (1996), we will take a
“solve-the-equation plug-in” approach to the problem of estimating b. The idea of this
approach is to start with the formula of the asymptotically optimal bandwidth, which
is found by minimizing a large-sample approximation to the mean squared error, and

to find an estimate of b by iterative methods. Let MISE{a(M(-;b)} = E[ISE{a™M(-;b)}],

where

ISE{aV ()} = /0 a(@){p(t) - a1V (t;0)Ydt. (4)
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In (4), function a(t) is assumed to be continuously differentiable with support [4, 1 — §]
for some § > 0, and a(t) > 0 for ¢ € [4,1 — 6]. The role of a(t) is to dampen the
behavior of the estimate at the boundary; it is only used to help derive the optimal
bandwidth. In practice, boundary kernels (Gasser et al., 1991) are used for estimation
on the boundary near 0 and 1.

Observe that W®*) in the definition of gl-(k) in (3) is also a kernel function. Suppose

we make the following assumptions:
(A1) The support of W®) is [—1,1];
(A2) [W® (v)vidv =0, for 0 <j <k
(A3) [W® (v)vkdv = (=1)kk! .

Since we have assumed that p is k£ + 2-times differentiable, by standard mean-squared

error arguments, the optimal bandwidth for estimating u® is

o2 (2k+1)V L/@i+)
bopt = ( > 3

n 2(l—k)B (5)

where | = k + 2,

B= (_“1)1 { /0 1 W(’“)(v)vldv}z /0 " a(o) {8 () do,

and
V= /1 a(){W® (v)}2dv.
0

The numerator of (5) represents the variance of 1¥)(¢; b), while the denominator comes
from the squared bias term. Note, however, that estimation of (5) requires an estimate
of ). We will be using a pilot estimate of i*) that gets updated in the iterative
algorithm given below. A fast estimator of 02, 52 can be calculated using the methods
of Gasser et al. (1991). Based on the resulting estimate 62, we have the following

iterative algorithm for estimating the optimal bandwidth for x(!), say b,. Note that
k=1 and [ = 3 here.

1. Set by = 1/n.
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2. Forv=1,2,...,10, set

where

3. Set B* = [;11.

Based on this estimated bandwidth, we obtain estimates of u(") from the formula in
(3). A similar algorithm can be developed to estimate the optimal bandwidth for y(®
with £ = 2 and [ = 4. The iterative algorithm was shown in Gasser et al. (1991) to

have desirable asymptotic problems and good finite-sample behavior.

3.3 Locally weighted least squares estimation

Another method of nonparametrically estimating x4 in (1) is by using locally weighted
polynomial estimation techniques (Fan and Gijbels, 1996). The approach is to approx-
imate () locally at a point ¢y by a simple polynomial of order p. Using Taylor series

expansions yields that in a neighborhood of %,

2)
WO~ alio) + ()t~ 1) + e g
4o M(pjjgt())(t—to)”. (6)

We will take p = 4 in this paper so that we can estimate x() and u(® well. Locally

weighted polynomial estimation involves minimizing
n P
Z{Y; - Zﬁj(tz’ — t0) }* Kn(t: — to), (7)
i=1 §=0

where Kj,(-) = h'K(-), K is a kernel weighting function that downweights points that
are far away from ¢y, and A is the bandwidth of the kernel. The solution that minimizes

(7) is given by a weighted least squares solution. In particular, the solution of (7) is
fi(t; b, p) = €} (T,WT,)"'T,WY, (8)
9
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where
1 ti—t - (ti—1t)P

Tp=|: : : : ;
1 ty—t oo (tn—t)P
Y = (V,.... )T, W = diaglh ' K{(t; — t)/h},...,h ' K{(t, — t)/h}], and e; is a
column vector with 1 in the first entry and zero otherwise. Advantages of the locally
weighted polynomial method include avoidance of the use of boundary kernels as well

as appealing minimax properties (Fan and Gijbels, 1996, Sec. 3.2). Differentiation of

(8) yields the local pth degree estimate of u(t),
(i (t; b, p) = €4(T,ST,) ' T,SY, (9)

where e; is a column vector with 1 in the second entry and zero elsewhere.

Taking the second derivative of (8) yields the estimated second derivative of p(t),
2t h,p) = €4(T,ST,) "' T,8Y, (10)

where e3 is a column vector with 1 in the third entry and zero elsewhere.

Define the following terms: u;(K) = [2/K(z)dz, N, the (p+ 1) x (p + 1) matrix
with (¢, j)th element y;.; o(K) and M, (u) the same as N, but with the first column
replaced by (1,u,u? ...,uP). Because p = 3, the bias and variance calculations for

Y are given by (Wand and Jones, 1995, p. 137)

1

E{O (th,p) = pO @t it} = | g us(Kia)u® (@)
1 @) £ (¢
51 {pa(Ki13) — pa(Koz)} s (f)({) ) h'
+op(h*7"T?) (11)
and
2
Var {4 (t; h, p)} = nlh_3R(Kl,3)% +op(n h7Y), (12)
where f(t) and f()(t) are the density and its derivative of ¢,...,t,, and
r!|M,,| K (u)
K p(u) = —2——~
g N |
10
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Similar calculations give the bias and variance of 1 to be

1

E{i® @t h,p) — pP )1, ... ta} = m%(Kl,s)N(E)) (t)
1 () (4) £(1)
"‘ﬂ {ma(K13) — pa(Koz3)} a (Jtc)({) () h*
+op(RPTT2) (13)
and
2
Var{i®@(t; h,p)} = n W3 R(K13)—— + op(n~'h™3), (14)

f(t)

As with kernel regression estimation, the major issue is selection of the bandwidth.
We will use the “solve-the-equation plug-in” method of Ruppert, Sheather, and Wand
(1995), which is an adaptation of the ideas of Gasser et al. (1991) to the locally
weighted polynomial setting. Ruppert et al. (1995) demonstrate the convergence of
the density estimators based on the “solve-the-equation plug-in” method to the MISE-
optimal bandwidth.

3.4 Penalized smoothing spline estimation

The last method of nonparametric estimation we will examine is smoothing spline es-
timation (Green and Silverman, 1994). Smoothing spline methods focus on estimating

44 by minimizing the following objective function:

S {¥i- u(e) + A [ {20} (13

where A > 0 denotes a smoothing parameter. If A = 0, then this corresponds to
interpolation in the data, while A = oo corresponds to fitting a simple linear regression
to the data (Y;,%;), ¢ = 1,...,n. The model complexity in (15) is effectively controlled
by A.

The minimization problem in (15) is given by a cubic spline on the interval [¢(1y, t(n)).
Denote the solution to (15) as fi. The spline solution fi has the following properties
(Hérdle, 1990):

1. fi is a cubic polynomial between two successive t-values;

11
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2. At the observation points ¢;, the curve i and its first two derivatives are contin-

uous
3. At the boundary points t() and t(,), the second derivative of fi(t) is zero.

Let D™ denote the m-th differential operator. We will be taking m = 4. Then the

optimization problem in (15) is equivalent to finding u to minimize
S Y- ulta) ¥ + A /{Dmu(t)}th. (16)
i=1

We will be using the algorithm suggested by Heckman and Ramsay (2000) for estima-
tion here. If we define the m x m Wronskian matrix W (t) to have (i, j)th element
W (t);; = DU=Vb,(t), where by (t),...,bn(t) are the basis functions, then simple dif-
ferential equation theory yields that the basis functions are {1,¢,¢% ¢t3}. We can then

define the Green’s function G(s,t) as

G(s,t) = {2211 bi(s)bi (1), t<s

0 otherwise

where b} (t) (i = 1,...,m) is the last row of the inverse of W (¢). We can then define a

n x n kernel matrix K, where the (¢, j)th element is K;; = k(¢;,¢;), and

k(s,t)z/o G(s,u)G(t, u)du.

The kernel matrix represents the reproducing kernel function in the reproducing kernel
Hilbert space (Wahba, 1990). The theory gives that the minimizer of (16) is of the

form
) =D mibi(t) + > k(t;, 1),
7j=1 7j=1
Numerically, it is found by minimizing

(Y - Bn—K7)'(Y - Bnp—Kv) + MKy,

where Y = (Y1,...,Y), n= (1, ---,0m), Y= (71, - -, V), and U is an m x m matrix
with (7, 7)th entry u;(¢;). While this will generally lead to a system of linear equations

that are solved in O(n®) operations, Heckman and Ramsay (2000) propose a O(n)

12
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algorithm for estimation. If we let fiy = (fix(t1),.- ., fin(ty)), then for some vector

veRY™ [y=Y — AQv, where

(QAKQ+1Q'Q)c =Q'Y, (17)

where Q is any nx (n—m) matrix of full column rank with Q'U = 0. The algorithm then
involves finding a banded matrix Q with QU = 0 using the Cholesky decomposition.
Once this matrix is generated, the solution ¢ of (17) can then be found. This then yields
a value for [i). To calculate the values of the derivative, we first solve the equation

itx — KQc = Ud for d. Then the Ith derivative of iy is given by
iy = U0+ KYQe,

where U®) is an m x m matrix has (4, j)th element D'u;(t;) and K" is an n x n matrix
with (7, j)th element D'k(¢;,¢;) An important issue in the estimation of ji is choice of
A. We will use generalized cross-validation (Wahba, 1990) for this.

Once we have an estimator of u(Y and p(® using either nonparametric regres-
sion estimator, we then define candidate replication origin and replication termination
sites as being zero-crossings of the estimated derivative. Since we are using constant
bandwidth methods for estimation, the zero-crossings correspond to the values of ¢
where (M (t—)aM (t+) < 0. Candidate replication origins from these values of ¢ are
those where 1 (t) < 0, while candidate replication termination sites are those where

pA(t) > 0.

3.5 Clustering methods

As mentioned in Section 2, a hypothesis has been put forward that the location of
replication origins is not random throughout the chromosome. An argument for this
hypothesis was put forward by Gilbert (2001). He argued that if the positions of
replication origins were distributed randomly across the chromosome, then some origins
might be physically too far apart for complete replication of DNA to occur within the

S phase of the cell cycle.

13
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Based on the data of Raghuraman et al. (2001), we are in a position to test
this hypothesis. Given the replication origins found using the methods of the previ-
ous sections, we can now test the hypothesis of clustering of replication origins. The
null hypothesis, Hy, is that the the locations of the replication origins are uniformly
distributed throughout the chromosome, while the alternative hypothesis is that the
replication origins cluster.

There are two types of hypotheses involving clustering that we wish to distinguish.
The first is that there is no clustering of replication origin locations throughout the
chromosome; this will be referred to as a global null hypothesis of clustering. If the
global null hypothesis is true, then the replication origin locations found are consistent
with that of randomly generated locations. Another type of clustering hypothesis
involves determining whether or not a particular cluster is significant, this will be
referred to as a local hypothesis of clustering. We will use scan statistics (Glaz et al.,
2001) to test local hypotheses of null clustering.

We start by considering the global clustering null hypothesis. The Kolmogorov-
Smirnov statistic is used to test this hypothesis. If F,(z) denotes the empirical cu-
mulative distribution function of the putative replication origins, scaled to the interval
[0, 1], the Kolmogorov-Smirnov statistic for testing the global null hypothesis of m

random replication origins is

D = sup Vm(|Fp(z) — 2|).

While small values of D are consistent with the null hypothesis, large values of D
suggest that the locations of the replication origins are not random and will lead to
rejection of the null hypothesis. The null distribution of this test statistic is tabulated
and p-values can be given by standard statistical software.

We now turn to the problem involving local inference about the clusters. Let
(Xi,..., Xm,;) be the locations of the replication origins for the jth chromosome; these
are the locations estimated using the methods of §3.2 — 3.4. In the sequel, we suppress

the dependence of m; on j. We consider the r-scan statistic (Karlin and Macken, 1991;

14
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Dembo and Karlin, 1992):

Note that R; is the total distance between putative replication origin locations starting
from the ith location with a window size of r locations. To assess clustering, we would
use my, the kth smallest R;,. Smaller values of mj, correspond to stronger evidence of
clustering. If the locations of the replication origins were scattered randomly on the

chromosome, then by approximation results in Karlin and Macken (1991),

k-1

)\i
Pr (m; < n%) ~1— exp(—)\) (Z F) , (18)

i=0
where A = 27 /rl. In (18), z is chosen such that the probability equals 0.01, following

previous recommendations (Karlin and Macken, 1991).

4 Yeast Data

We now apply the proposed methodology to the data discussed in §2. Because of
numerical error, we define replication origins as locations with estimated first derivative
less than 1x 10 in magnitude and second derivative less than —1x107°. A significance

test on the results was done by the following permutation scheme:

1. Gene expression measurements were shuffled within each chromosome.
2. The analysis was repeated and candidate replication origins were determined.

3. Steps 1 and 2 were repeated 10000 times.

The number of replication origins per chromosome is given in Table 1. The correspond-
ing number in parentheses represents the average number of replication origins found,
averaged across the 10000 permuted datasets. This represents the expected number of
false positives. While the locations found by the three methods do not show perfect
concordance, the general locations appear to be consistent. However, the column totals
are bigger than the 200-400 replication origins commonly believed. We return to this

point in the Discussion.

15

Hosted by The Berkeley Electronic Press



The next step was to assess the clustering of replication origins on both a global
(i.e., chromosomewide) and local basis. Based on the Kolmogorov-Smirnov statistic,
there was no evidence of clustering using any of the methods for identifying replication
origins based on Table 1. The scan statistic with different choices of r also fails to any

statistically significant clusters.

5 Discussion

In this article, we have developed the use of nonparametric regression, Kolmogorov-
Smirnov and scan statistics in order to identify replication origins from microarray
data and to test a hypothesis put forward by Gilbert (2001) as to whether replication
of origins occur randomly in the eukaryotic genome.

Our analysis came up with two relatively surprising conclusions. The first is that
the number of predicted replication origins (summarized in Table 1) is much bigger
than the 200-400 commonly believed to exist. It should be pointed out that the origins
represent computational predictions and would be need to validated in the lab to
determine if they are true or not.

The second conclusion is that there is no evidence to suggest that clustering of
replication origins occurs on either a chromosomal basis or a more local basis. Potential
limitations of the analysis include a lack of experimental replication and experimental-
specific artifacts that contribute to additional sources of variation.

There were several key points of note to this analysis. First, based on the mi-
croarray data generated, we were interested in studying its pattern as a function of
chromosome position. Thus, this analysis presents one method of incorporating bio-
logical information with high-throughput genomic data. Second, given the structure
of the microarray experiment used, the interest was on the first and second derivatives
of the gene expression profile. This is different from many studies in which only the
mean structure is considered.

While replication origins are of biological interest, there is very little biological back-

ground regarding them that we could have incorporated into the statistical modelling.
16
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This was our main motivation for utilizing nonparametric methods for identification of
replication origins. If more biological knowledge regarding replication origins and their
patterns of gene expression were available, model-based techniques might be feasible.
While the Kolmogorov-Smirnov might have lower power than a model-based approach,
its results are relatively robust.

One outstanding issue that remains is assessment of variability of the estimated
replication origins. Because the variance of the zero-crossings is related to the variance
of the estimated derivatives, it will be relatively wiggly. One approach that we used
is the parametric bootstrap to assess the variability in the zero-crossings. We fit the
model (1) using one of the estimation methods described in Section 3.2 - 3.4 and
then determined optimal bandwidths or smoothing parameters. We then calculated
residuals é; = Y; — fu(t;) (i = 1,...,n). For each chromosome, we generate a new

dataset (Y?,...,Y?), b=1,..., B, where

P = ilt:) + e,

el,..., e’ is a random sample from a normal distribution with mean 0 and variance G2,

where

52 =10 x b.

Note that we are oversmoothing the bootstrap, as suggested by Davidson and Hinkley
(1997). Changing 62 to other multiples of b did not substantially alter the results.
We then apply the estimation procedures to obtain an estimate of the derivative of
. We then calculate a stability score for the location of an observed zero-crossing as
the number of bootstrapped datasets in which it is also a zero-crossing. However, this
yielded very small values. This suggests that perhaps even more parametric methods
of inference are needed in this area.

The experimental data described in the paper were generated using DNA microar-
rays; note that the data are quite different than those considered in other papers, which
typically two conditions, such as cancer versus noncancer tissue (e.g. Tusher et al.,

2001). Increasingly, high-throughput genomic and proteomic studies will become more
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commonplace, so it will be important to develop methods for these high-dimensional

small sample size settings.
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%HL

Chromosome coordinate

Figure 1: Schematic of replication origins and termination in a chromosome. The
horizontal is position on a chromosome, while the vertical axis is the percentage of HL
relative to total. Point A represents an early replication origin, while B indicates a late
replication origin. Point C (valley) is a replication terminus.
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Figure 2: Gene expression profile of Chromosome 11 as a function of location from
microarray experiment by Raghuraman et al. (2001).
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Table 1: Number of candidate replication origins found for each chromosome in yeast
data of Raghuraman et al. (2001) using methods developed in §3.2 — §3.4.

Chromosome Kernel estimation Locally weighted LS Smoothing spline
1 38 (8) 47 (9) 40 (6)
2 130 (14) 140 (21) 158 (29)
3 42 (6) 47 (6) 60 (11)
4 280 (50) 290 (58) 319 (54)
5 90 (10) 102 (11) 99 (16)
6 36 (5) 47 (7) 44 (9)
7 170 (32) 189 (34) 221 (27)
8 90 (12) 98 (14) 113 (15)
9 85 (9) 80 (14) 91 (14)
10 120 (16) 142 (28) 133 (14)
11 108 (12) 130 (18) 118 (20)
12 132 (25) 158 (22) 196 (39)
13 120 (16) 162 (28) 207 (32)
14 134 (21) 153 (31) 188 (19)
15 176 (18) 239 (33) 256 (48)
16 152 (24) 164 (28) 205 (36)
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