11 research outputs found

    Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial

    Get PDF
    Background. Pediatric tuberculous meningitis (TBM) commonly causes death or disability. In adults, high-dose rifampicin may reduce mortality. The role of fluoroquinolones remains unclear. There have been no antimicrobial treatment trials for pediatric TBM. Methods. TBM-KIDS was a phase 2 open-label randomized trial among children with TBM in India and Malawi. Participants received isoniazid and pyrazinamide plus: (i) high-dose rifampicin (30 mg/kg) and ethambutol (R30HZE, arm 1); (ii) high-dose rifampicin and levofloxacin (R30HZL, arm 2); or (iii) standard-dose rifampicin and ethambutol (R15HZE, arm 3) for 8 weeks, followed by 10 months of standard treatment. Functional and neurocognitive outcomes were measured longitudinally using Modified Rankin Scale (MRS) and Mullen Scales of Early Learning (MSEL). Results. Of 2487 children prescreened, 79 were screened and 37 enrolled. Median age was 72 months; 49%, 43%, and 8% had stage I, II, and III disease, respectively. Grade 3 or higher adverse events occurred in 58%, 55%, and 36% of children in arms 1, 2, and 3, with 1 death (arm 1) and 6 early treatment discontinuations (4 in arm 1, 1 each in arms 2 and 3). By week 8, all children recovered to MRS score of 0 or 1. Average MSEL scores were significantly better in arm 1 than arm 3 in fine motor, receptive language, and expressive language domains (P < .01). Conclusions. In a pediatric TBM trial, functional outcomes were excellent overall. The trend toward higher frequency of adverse events but better neurocognitive outcomes in children receiving high-dose rifampicin requires confirmation in a larger trial. Clinical Trials Registration. NCT02958709

    An in vitro model of hepatitis C virion production

    No full text
    The hepatitis C virus (HCV) is a major cause of liver disease worldwide. The understanding of the viral life cycle has been hampered by the lack of a satisfactory cell culture system. The development of the HCV replicon system has been a major advance, but the system does not produce virions. In this study, we constructed an infectious HCV genotype 1b cDNA between two ribozymes that are designed to generate the exact 5′ and 3′ ends of HCV. A second construct with a mutation in the active site of the viral RNA-dependent RNA polymerase (RdRp) was generated as a control. The HCV-ribozyme expression construct was transfected into Huh7 cells. Both HCV structural and nonstructural proteins were detected by immunofluorescence and Western blot. RNase protection assays showed positive- and negative-strand HCV RNA. Sequence analysis of the 5′ and 3′ ends provided further evidence of viral replication. Sucrose density gradient centrifugation of the culture medium revealed colocalization of HCV RNA and structural proteins in a fraction with the density of 1.16 g/ml, the putative density of HCV virions. Electron microscopy showed viral particles of ≈50 nm in diameter. The level of HCV RNA in the culture medium was as high as 10 million copies per milliliter. The HCV-ribozyme construct with the inactivating mutation in the RdRp did not show evidence of viral replication, assembly, and release. This system supports the production and secretion of high-level HCV virions and extends the repertoire of tools available for the study of HCV biology
    corecore