1,179 research outputs found
Brain homeostasis : VEGF receptor 1 and 2 ; two unequal brothers in mind
Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis
Geometric Algebra Model of Distributed Representations
Formalism based on GA is an alternative to distributed representation models
developed so far --- Smolensky's tensor product, Holographic Reduced
Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced
by geometric products, interpretable in terms of geometry which seems to be the
most natural language for visualization of higher concepts. This paper recalls
the main ideas behind the GA model and investigates recognition test results
using both inner product and a clipped version of matrix representation. The
influence of accidental blade equality on recognition is also studied. Finally,
the efficiency of the GA model is compared to that of previously developed
models.Comment: 30 pages, 19 figure
Cartoon Computation: Quantum-like computing without quantum mechanics
We present a computational framework based on geometric structures. No
quantum mechanics is involved, and yet the algorithms perform tasks analogous
to quantum computation. Tensor products and entangled states are not needed --
they are replaced by sets of basic shapes. To test the formalism we solve in
geometric terms the Deutsch-Jozsa problem, historically the first example that
demonstrated the potential power of quantum computation. Each step of the
algorithm has a clear geometric interpetation and allows for a cartoon
representation.Comment: version accepted in J. Phys.A (Letter to the Editor
SHORT COMMUNICATION: Complementary tumor induction in neural grafts exposed to N-ethyl-N-nitrosourea and an activated myc gene
Using a combination of transplacental carcinogen exposure and retrovirus-mediated oncogene transfer into fetal brain transplants, we have studied complementary transformation by N-ethyl-N-nitrosourea (NEU) and the v-myc oncogene in the nervous system. Previous experiments had demonstrated that both agents will not induce tumors independently whereas simultaneous expression of v-H-ras and v-gag/myc exerted a powerful transforming potential in neural grafts. In order to identify other genetic alterations that co-operate with an activated myc gene, the neurotropic carcinogen NEU was used to generate mutations of cellular genes. On embryonic day 14 (ED14), pregnant donor animals (F344 rats) received a single i.v. dose of NEU (50 mg/kg). Twenty-four hours later (ED15), the fetal brains were removed, triturated and incubated with a retroviral vector carrying the v-gag/myc oncogene. Subsequently, these primary cell suspensions were transplanted stereotactically into the caudate-putamen of syngenic adult recipients. After latency periods of 3-6 months, 5 of 10 recipients harboring ED15 fetal brain transplants developed malignant, poorly differentiated neuroectodermal tumors in the grafts. No tumor development was observed in seven recipients harboring ED16 neural grafts. Cell lines were established from three tumors and the 110 kd gag/myc fusion protein encoded by the retroviral construct was identified in the tumors by Western blotting. Several candidate genes for mutational activation by NEU including the H-ras, K-ras and neu oncogenes were analyzed for specific point mutations by polymerase chain reaction (PCR) and direct DNA sequencing of the PCR products. However, no mutations were found in any of these genes. These findings lend further support to the multistep hypothesis of neoplastic transformation in the brain. The tumors induced in this model provide an interesting tool for the identification of genes that co-operate with an activated myc gene in neurocarcinogenesi
Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications
Business optimization is becoming increasingly important because all business
activities aim to maximize the profit and performance of products and services,
under limited resources and appropriate constraints. Recent developments in
support vector machine and metaheuristics show many advantages of these
techniques. In particular, particle swarm optimization is now widely used in
solving tough optimization problems. In this paper, we use a combination of a
recently developed Accelerated PSO and a nonlinear support vector machine to
form a framework for solving business optimization problems. We first apply the
proposed APSO-SVM to production optimization, and then use it for income
prediction and project scheduling. We also carry out some parametric studies
and discuss the advantages of the proposed metaheuristic SVM.Comment: 12 page
Geometric representations for minimalist grammars
We reformulate minimalist grammars as partial functions on term algebras for
strings and trees. Using filler/role bindings and tensor product
representations, we construct homomorphisms for these data structures into
geometric vector spaces. We prove that the structure-building functions as well
as simple processors for minimalist languages can be realized by piecewise
linear operators in representation space. We also propose harmony, i.e. the
distance of an intermediate processing step from the final well-formed state in
representation space, as a measure of processing complexity. Finally, we
illustrate our findings by means of two particular arithmetic and fractal
representations.Comment: 43 pages, 4 figure
Quantum Aspects of Semantic Analysis and Symbolic Artificial Intelligence
Modern approaches to semanic analysis if reformulated as Hilbert-space
problems reveal formal structures known from quantum mechanics. Similar
situation is found in distributed representations of cognitive structures
developed for the purposes of neural networks. We take a closer look at
similarites and differences between the above two fields and quantum
information theory.Comment: version accepted in J. Phys. A (Letter to the Editor
An in vitro study of osteoblast vitality influenced by the vitamins C and E
Vitamin C and vitamin E are known as important cellular antioxidants and are involved in several other non-antioxidant processes. Generally vitamin C and vitamin E are not synthesized by humans and therefore have to be applied by nutrition. The absence or deficiency of the vitamins can lead to several dysfunctions and even diseases (e.g. scurvy). The main interest in this study is that vitamin C and E are known to influence bone formation, e.g. vitamin C plays the key role in the synthesis of collagen, the major component of the extracellular bone matrix. In the present study we evaluate the effect of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) on the proliferation and differentiation of primary bovine osteoblasts in vitro. Starting from standard growth medium we minimized the foetal calf serum to reduce their stimulatory effect on proliferation. An improved growth and an increased synthesis of the extracellular matrix proteins collagen type I, osteonectin and osteocalcin was observed while increasing the ascorbic acid concentration up to 200 μg/ml. Furthermore the effects of α-tocopherol on cell growth and cell differentiation were examined, whereby neither improved growth nor increased synthesis of the extracellular matrix proteins collagen type I, osteonectin and osteocalcin were detected. Further investigations are necessary to target at better supportive effect of vitamins on bone regeneration, and healing
Universal neural field computation
Turing machines and G\"odel numbers are important pillars of the theory of
computation. Thus, any computational architecture needs to show how it could
relate to Turing machines and how stable implementations of Turing computation
are possible. In this chapter, we implement universal Turing computation in a
neural field environment. To this end, we employ the canonical symbologram
representation of a Turing machine obtained from a G\"odel encoding of its
symbolic repertoire and generalized shifts. The resulting nonlinear dynamical
automaton (NDA) is a piecewise affine-linear map acting on the unit square that
is partitioned into rectangular domains. Instead of looking at point dynamics
in phase space, we then consider functional dynamics of probability
distributions functions (p.d.f.s) over phase space. This is generally described
by a Frobenius-Perron integral transformation that can be regarded as a neural
field equation over the unit square as feature space of a dynamic field theory
(DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with
rectangular support are mapped onto uniform p.d.f.s with rectangular support,
again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with
arXiv:1204.546
Deep Underground Science and Engineering Laboratory - Preliminary Design Report
The DUSEL Project has produced the Preliminary Design of the Deep Underground
Science and Engineering Laboratory (DUSEL) at the rehabilitated former
Homestake mine in South Dakota. The Facility design calls for, on the surface,
two new buildings - one a visitor and education center, the other an experiment
assembly hall - and multiple repurposed existing buildings. To support
underground research activities, the design includes two laboratory modules and
additional spaces at a level 4,850 feet underground for physics, biology,
engineering, and Earth science experiments. On the same level, the design
includes a Department of Energy-shepherded Large Cavity supporting the Long
Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates
one laboratory module and additional spaces for physics and Earth science
efforts. With input from some 25 science and engineering collaborations, the
Project has designed critical experimental space and infrastructure needs,
including space for a suite of multidisciplinary experiments in a laboratory
whose projected life span is at least 30 years. From these experiments, a
critical suite of experiments is outlined, whose construction will be funded
along with the facility. The Facility design permits expansion and evolution,
as may be driven by future science requirements, and enables participation by
other agencies. The design leverages South Dakota's substantial investment in
facility infrastructure, risk retirement, and operation of its Sanford
Laboratory at Homestake. The Project is planning education and outreach
programs, and has initiated efforts to establish regional partnerships with
underserved populations - regional American Indian and rural populations
- …
