3,895 research outputs found

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Evidence of Rapid Phenocryst Growth of Olivine During Ascent in Basalts From the Big Pine Volcanic Field: Application of Olivine‐Melt Thermometry and Hygrometry at the Liquidus

    Full text link
    The Quaternary Big Pine (BP) volcanic field in eastern California is notable for the occurrence of mantle xenoliths in several flows. This points to rapid ascent of basalt through the crust and precludes prolonged storage in a crustal reservoir. In this study, the hypothesis of phenocryst growth during ascent is tested for several basalts (13–7 wt% MgO) and shown to be viable. Phenocrysts of olivine and clinopyroxene frequently display diffusion‐limited growth textures, and clinopyroxene compositions are consistent with polybaric crystallization. When the most Mg‐rich olivine in each sample is paired with the whole‐rock composition, resulting Fe2+‐MgKD(olivine‐melt) values (0.31–0.36) match those calculated from literature models (0.32–0.36). Application of a Mg‐ and a Ni‐based olivine‐melt thermometer from the literature, both calibrated on the same experimental data set, leads to two sets of temperatures that vary linearly with whole‐rock MgO wt%. Because the Ni thermometer is independent of water content, it provides the actual temperature at the onset of olivine crystallization (1247–1097°C), whereas the Mg thermometer gives the temperature under anhydrous conditions and thus allows ΔT (=TMg − TNi = depression of liquidus due to water) to be obtained. The average ΔT for all samples is ~59°C, which is consistent with analyzed water contents of 1.5–3.0 wt% in olivine‐hosted melt inclusions from the literature. Because the application of olivine‐melt thermometry/hygrometry at the liquidus only requires microprobe analyses of olivine combined with whole‐rock compositions, it can be used to obtain large global data sets of the temperature and water contents of basalts from different tectonic settings.Plain Language SummaryBasaltic lavas are a window into their mantle source regions, which is why it is important to determine their temperatures and water contents. In this study, a new approach that allows these two parameters to be quantified is demonstrated for basalts from the Big Pine volcanic field, CA. They were targeted because many contain chunks of dense mantle rocks, which precludes storage in a crustal magma chamber and points to direct ascent from the mantle to the surface along fractures. Two hypotheses are proposed, tested, and shown to be viable in this study: (1) olivine crystallized in the basalts during ascent, and (2) the most Mg‐rich olivine analyzed in each basalt represents the first olivine to grow during ascent. This enables the most Mg‐rich olivine to be paired with the whole‐rock composition in the application of olivine‐melt thermometry and hygrometry. The results match those from published, independent studies. The success of this approach paves the way for the attainment of large, high‐quality data sets for basalts from a wide variety of tectonic settings. This, in turn, may allow global variations in mantle temperature and volatile content to be mapped in greater detail and better understood.Key PointsRapid phenocryst growth occurs during ascent in Mg‐rich basalts (some carry mantle xenoliths) from the Big Pine volcanic field, CAThe most Mg‐rich olivine can be paired with the whole‐rock composition to apply olivine‐melt thermometry/hygrometry at the liquidusLarge, high‐quality data sets on the temperature and water content of basalts from various tectonic settings can be obtained by this methodPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/3/ggge22329-sup-0001-2020GC009264-SI.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/2/ggge22329.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/1/ggge22329_am.pd

    Space Launch System Booster Separation Supersonic Powered Testing with Surface and Off-Body Measurements

    Get PDF
    A wind tunnel test was run in the NASA Langley Unitary Plan Wind Tunnel simulating the separation of the two solid rocket boosters (SRB) from the core stage of the NASA Space Launch System (SLS). The test was run on a 0.9% scale model of the SLS Block 1B Cargo (27005) configuration and the SLS Block 1B Crew (28005) configuration at a Mach of 4.0. High pressure air was used to simulate plumes from the booster separation motors located at the nose and aft skirt of the two boosters. Force and moment data were taken on both SRBs and on the core stage. Schlieren still photos and video were recorded throughout testing. A set of points were acquired using Cross-correlation Doppler Global Velocimetry (CCDGV) readings to get 3 component velocity measurements between the core and the left-hand SRB. The CCDGV laser was utilized to record flow visualization in the same location, between the core and the left-hand SRB. Pressure Sensitive Paint data were taken on a separate set of runs. Computational Fluid Dynamics (CFD) runs were computed on a subset of the wind tunnel data points for comparison. A combination of the force/moment, CCDGV and Pressure Sensitive Paint (PSP) data (as well as schlieren images) at the CFD-specified test conditions will be used te the CFD simulations that will be used to build an SLS booster separation database flight conditions

    Enumeration of States in a Periodic Glass

    Full text link
    We present an analytic enumeration of the metastable states, NsN_s, in a periodic long-range Josephson array frustrated by a transverse field. We find that the configurational entropy, SconflnNsS_{conf} \equiv \ln N_s, is extensive and scales with frustration, confirming that the non-random system is glassy. We also find that SconfS_{conf} is different from that of its disordered analogue, despite that fact that the two models share the same dynamical equations

    Solar Neutron Events of October-November 2003

    Full text link
    During the period when the Sun was intensely active on October-November 2003, two remarkable solar neutron events were observed by the ground-based neutron monitors. On October 28, 2003, in association with an X17.2 large flare, solar neutrons were detected with high statistical significance (6.4 sigma) by the neutron monitor at Tsumeb, Namibia. On November 4, 2003, in association with an X28 class flare, relativistic solar neutrons were observed by the neutron monitors at Haleakala in Hawaii and Mexico City, and by the solar neutron telescope at Mauna Kea in Hawaii simultaneously. Clear excesses were observed at the same time by these detectors, with the significance calculated as 7.5 sigma for Haleakala, and 5.2 sigma for Mexico City. The detector onboard the INTEGRAL satellite observed a high flux of hard X-rays and gamma-rays at the same time in these events. By using the time profiles of the gamma-ray lines, we can explain the time profile of the neutron monitor. It appears that neutrons were produced at the same time as the gamma-ray emission.Comment: 35 pages, 21 figures, accepted for publication in Ap

    The fully frustrated XY model with next nearest neighbor interaction

    Get PDF
    We introduce a fully frustrated XY model with nearest neighbor (nn) and next nearest neighbor (nnn) couplings which can be realized in Josephson junction arrays. We study the phase diagram for 0x10\leq x \leq 1 (xx is the ratio between nnn and nn couplings). When x<1/2x < 1/\sqrt{2} an Ising and a Berezinskii-Kosterlitz-Thouless transitions are present. Both critical temperatures decrease with increasing xx. For x>1/2x > 1/\sqrt{2} the array undergoes a sequence of two transitions. On raising the temperature first the two sublattices decouple from each other and then, at higher temperatures, each sublattice becomes disorderd.Comment: 11 pages, 5 figure

    Discrete breathers in dc biased Josephson-junction arrays

    Full text link
    We propose a method to excite and detect a rotor localized mode (rotobreather) in a Josephson-junction array biased by dc currents. In our numerical studies of the dynamics we have used experimentally realizable parameters and included self-inductances. We have uncovered two families of rotobreathers. Both types are stable under thermal fluctuations and exist for a broad range of array parameters and sizes including arrays as small as a single plaquette. We suggest a single Josephson-junction plaquette as an ideal system to experimentally investigate these solutions.Comment: 5 pages, 5 figure, to appear June 1, 1999 in PR

    Hydrogen atom in a spherical well: linear approximation

    Full text link
    We discuss the boundary effects on a quantum system by examining the problem of a hydrogen atom in a spherical well. By using an approximation method which is linear in energy we calculate the boundary corrections to the ground-state energy and wave function. We obtain the asymptotic dependence of the ground-state energy on the radius of the well.Comment: Revised version to appear in European Journal of Physic

    Empowering Students in Leading their Education and Practice: The Design Workbook

    Get PDF
    © 2019 The Authors. iJADE © 2019 NSEAD/John Wiley & Sons Ltd How does education prepare future designers for current and future requirements of the field? An attempt to respond to this question is presented through the Design Workbook: a curricular project that has been proposed and developed over the course of three phases. In Phase One, the objectives, structure and format were defined: an online interface containing activities organised under five chapters that aim at building students’ creative confidence and sensitivity to surrounding contexts, and prepare them to lead their career path. In Phase Two, the website was developed to its first usable version, and content applied into live classes. Phase Three was marked with content refinement for the activities, navigation and feature redesign in the interface, and new ways of conducting the course. The article summarises learning points from the first two phases, and provides new findings and analyses from the final phase. It also includes a sample of the activities content, student works and feedback as well as the interface development stages. The methodology utilised throughout consisted of active research, as well as learning outcomes assessment using direct and indirect measures. Assessment results and classroom observations confirmed that students benefit greatly from visualising ideas, hands on activities, design thinking workshops, as well as from collaborative experiences, to avoid facing designer\u27s block and to practise empowerment of self and others. Finally, challenges, opportunities and future implications are discussed, alongside implementation possibilities: The Design Workbook can run as a sole course, spread across the curriculum, and expand into the community
    corecore