4,416 research outputs found

    On the dc Magnetization, Spontaneous Vortex State and Specific Heat in the superconducting state of the weakly ferromagnetic superconductor RuSr2_{2}GdCu2_{2}O8_{8}

    Full text link
    Magnetic-field changes << 0.2 Oe over the scan length in magnetometers that necessitate sample movement are enough to create artifacts in the dc magnetization measurements of the weakly ferromagnetic superconductor RuSr2_{2}GdCu2_{2}O8_{8} (Ru1212) below the superconducting transition temperature Tc≈T_{c} \approx 30 K. The observed features depend on the specific magnetic-field profile in the sample chamber and this explains the variety of reported behaviors for this compound below TcT_{c}. An experimental procedure that combines improvement of the magnetic-field homogeneity with very small scan lengths and leads to artifact-free measurements similar to those on a stationary sample has been developed. This procedure was used to measure the mass magnetization of Ru1212 as a function of the applied magnetic field H (-20 Oe ≤\le H ≤\le 20 Oe) at T<TcT < T_{c} and discuss, in conjunction with resistance and ac susceptibility measurements, the possibility of a spontaneous vortex state (SVS) for this compound. Although the existence of a SVS can not be excluded, an alternative interpretation of the results based on the granular nature of the investigated sample is also possible. Specific-heat measurements of Sr2_{2}GdRuO6_{6} (Sr2116), the precursor for the preparation of Ru1212 and thus a possible impurity phase, show that it is unlikely that Sr2116 is responsible for the specific-heat features observed for Ru1212 at TcT_{c}.Comment: 17 pages, 6 figure

    Time--Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem

    Full text link
    We study chaotic orbits of conservative low--dimensional maps and present numerical results showing that the probability density functions (pdfs) of the sum of NN iterates in the large NN limit exhibit very interesting time-evolving statistics. In some cases where the chaotic layers are thin and the (positive) maximal Lyapunov exponent is small, long--lasting quasi--stationary states (QSS) are found, whose pdfs appear to converge to qq--Gaussians associated with nonextensive statistical mechanics. More generally, however, as NN increases, the pdfs describe a sequence of QSS that pass from a qq--Gaussian to an exponential shape and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains and the phase space dynamics becomes more uniformly ergodic.Comment: 15 pages, 14 figures, accepted for publication as a Regular Paper in the International Journal of Bifurcation and Chaos, on Jun 21, 201

    Noise induced state transitions, intermittency and universality in the noisy Kuramoto-Sivashinsky equation

    Get PDF
    We analyze the effect of pure additive noise on the long-time dynamics of the noisy Kuramoto-Sivashinsky (KS) equation in a regime close to the instability onset. We show that when the noise is highly degenerate, in the sense that it acts only on the first stable mode, the solution of the KS equation undergoes several transitions between different states, including a critical on-off intermittent state that is eventually stabilized as the noise strength is increased. Such noise-induced transitions can be completely characterized through critical exponents, obtaining that both the KS and the noisy Burgers equation belong to the same universality class. The results of our numerical investigations are explained rigorously using multiscale techniques.Comment: 4 pages, 4 figure

    Microwave saturation of the Rydberg states of electrons on helium

    Full text link
    We present measurements of the resonant microwave excitation of the Rydberg energy levels of surface state electrons on superfluid helium. The temperature dependent linewidth agrees well with theoretical predictions and is very small below 300 mK. Absorption saturation and power broadening were observed as the fraction of electrons in the first excited state was increased to 0.49, close to the thermal excitation limit of 0.5. The Rabi frequency was determined as a function of microwave power. The high values of the ratio of the Rabi frequency to linewidth confirm this system as an excellent candidate for creating qubits.Comment: 4 pages, 4 figure

    Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications

    Get PDF
    Most polymers are long-lasting and produced from monomers derived from fossil fuel sources. Bio-based and/or biodegradable plastics have been proposed as a sustainable alternative. Amongst those available, polyhydroxyalkanoate (PHA) shows great potential across a large variety of applications but is currently limited to packaging, cosmetics and tissue engineering due to its relatively poor physical properties. An expansion of its uses can be accomplished by developing nanocomposites where PHAs are used as the polymer matrix. Herein, a PHA biopolyester was melt blended with graphene nanoplatelets (GNPs) or with a 1:1 hybrid mixture of GNPs and carbon nanofibers (CNFs). The resulting nanocomposites exhibited enhanced thermal stability while their Young's modulus roughly doubled compared to pure PHA. The hybrid nanocomposites percolated electrically at lower nanofiller loadings compared to the GNP-PHA system. The electrical conductivity at 15 wt.% loading was ~ 6 times higher than the GNP-based sample. As a result, the electromagnetic interference shielding performance of the hybrid material was around 50% better than the pure GNPs nanocomposites, exhibiting shielding effectiveness above 20 dB, which is the threshold for common commercial applications. The thermal conductivity increased significantly for both types of bio-nanocomposites and reached values around 5 W K-1 m-1 with the hybrid-based material displaying the best performance. Considering the solvent-free and industrially compatible production method, the proposed multifunctional materials are promising to expand the range of application of PHAs and increase the environmental sustainability of the plastic and plastic electronics industry.Comment: 26 page

    Construction of Integrals of Higher-Order Mappings

    Full text link
    We find that certain higher-order mappings arise as reductions of the integrable discrete A-type KP (AKP) and B-type KP (BKP) equations. We find conservation laws for the AKP and BKP equations, then we use these conservation laws to derive integrals of the associated reduced maps.Comment: appear to Journal of the Physical Society of Japa

    Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    Get PDF
    The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolute pointing error (APE) are corrected. The satellite APE leads to a decrement in the derived flux, which can be up to ~10% (1 sigma) at the high-frequency end of the SPIRE range in the first part of the mission, and ~4% after Herschel operational day 1011. The lower frequency range of the SPIRE band is unaffected by this pointing error due to the larger beam size. Overall, for well-pointed, point-like sources, the absolute flux calibration is better than 6%, and for extended sources where mapping is required it is better than 7%.Comment: 20 pages, 18 figures, accepted for publication in MNRA
    • …
    corecore