63 research outputs found

    Development of the New Method of the Melted Cheese Products Without Salt-melters Using Cryomechanolysis

    Get PDF
    The aim of the work is elaboration of the principally new method of deep processing of rennet cheeses to the melting using the complex action of freezing and cryomechanolysis on the raw material that gives a possibility to destruct the hardly soluble biopolymers and to transform them into soluble form.The principally new method of the deep processing of rennet cheeses for receiving the melt cheese products without salts-smelters was elaborated. It differs from the traditional ones by the complete exclusion of the salts-smelters. This method is based on the use of the influence of freezing and fine-dispersed comminution on the raw material. It allows open biological potential of the rennet cheeses more fully and to extract the hidden (bound) protein forms from nanocomplexes of lipids and mineral substances. It allows destruct the proteins of rennet cheeses to the separate polymers and dipeptides and tripeptides. The used technological methods gave a possibility to exclude the salts-smelters at the rennet cheeses manufacturing. They favor the transformation of lipid-proteins paracaseinate calcium phosphate complexes to the separate amino acids and peptides and allow receive homogenous plastic mass.It was established, that at the complex action of freezing and fine-dispersed comminution on the rennet cheese the destruction of hardly soluble lipid-protein nanocomplexes and release of protein from the bound state into free one – nanoform (by 33,5…35 % more) takes place. The mechanisms of this process, connected with cryomechanodestruction of connections between lipids and proteins and non-fermented catalysis of nanocomplexes were described.It was established, that cryomechanodestruction and non-fermented catalysis of protein to the separate monomers – α-amino acids (by 55…60 %) takes place at freezing and fine-dispersed comminution of rennet cheese before melting. The mechanism of freezing and non-fermented analysis, connected with cryomechanocracking of protein molecules at the expanse of peptide protein connections destruction to the separate α-amino acids and their transformation into the free form was described. It was also demonstrated, that the conformational changes of protein molecules take place synchronously.The offered and elaborated nanotechnology of melt cheese products on the base of rennet cheeses without salts-smelters includes complex action of freezing and fine-dispersed comminution. The mechanisms of processes, connected with cryomechanodestruction of connections between lipids and protein to the separate α-amino acids are described.The cheese fillings for “Pancake” confectionary and cheese snacks – falafels were manufactured on the base of cheese mass, received using the new method and enriching vegetable nanoadditives. They exceed the well-known analogs by chemical composition and are remarkable for the storage life, increased in 2 times. At the same time the significant part of substances (BAS and biopolymers) in cheese filings is in nanodimensional form (55…60 % of protein), especially, free α-amino acids, easily assimilated by the human organism. The recipes and technologies of sauces-dressings, sauces-deeps, cheese snacks and so on are also elaborated on the base of cheese mass, received by the new method

    Combination of Endobronchial Ultrasound and Modern Cytological Diagnosis in Patients With Intrathoracic Lesions

    Get PDF
    Objective: To evaluate the effectiveness of endobronchial (EBUS) and endoscopic ultrasound (EUS) in cytomorphological verification of a malignant process using the transbronchial needle aspiration (TBNA) of the lymph nodes and mediastinal organs.Materials and methods: In 2017–2019 we analyzed the cytological samples (standard and cell block) of 172 patients (115 males and 57 females) with an average age of 61 years (25–82 years) in the clinical diagnostic laboratory of Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1 (Krasnodar, Russian Federation). Of them 111 were used for immunocytochemical analysis. The majority of the studies (77) were performed in patients with lung cancer in order to identify the stage of the disease. We used combined bronchoscopy under general anesthesia in the operating room with high-frequency ventilation and a rapid on-site evaluation (ROSE).Results: We found the lymph node and mediastinal invasion in 140 (81%) patients who underwent EBUS-EUS TBNA. The non-diagnostic results were obtained in 32 (19%) patients. The combination of EUS and EBUS with TBNA showed the highest effectiveness in the mentioned clinical cases. The sensitivity, specificity, and accuracy of the cytologic analysis during EBUS and EUS with TBNA and no ROSE were 89%, 100%, and 90%, respectively. ROSE reduced the rate of non-diagnostic results and increased the sensitivity (96%), specificity (100%), and accuracy (97%) of the cytologic evaluation.Conclusions: According to the obtained results, we recommend using EBUS-EUS TBNA modalities for morphological verification of the mediastinal lymph nodes as a routine invasive diagnosis component of the preoperative evaluation in patients with lung cancer

    Systematics of Inclusive Photon Production in 158 AGeV Pb Induced Reactions on Ni, Nb, and Pb Targets

    Get PDF
    The multiplicity of inclusive photons has been measured on an event-by-event basis for 158 AGeV Pb induced reactions on Ni, Nb, and Pb targets. The systematics of the pseudorapidity densities at midrapidity (rho_max) and the width of the pseudorapidity distributions have been studied for varying centralities for these collisions. A power law fit to the photon yield as a function of the number of participating nucleons gives a value of 1.13+-0.03 for the exponent. The mean transverse momentum, , of photons determined from the ratio of the measured electromagnetic transverse energy and photon multiplicity, remains almost constant with increasing rho_max. Results are compared with model predictions.Comment: 16 pages including 4 figure

    Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV

    Full text link
    Transverse energy, charged particle pseudorapidity distributions and photon transverse momentum spectra have been studied as a function of the number of participants (N_{part}) and the number of binary nucleon-nucleon collisions (N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A scaling of the transverse energy pseudorapidity density at midrapidity as N_{part}^{1.08 \pm 0.06} and N_{coll}^{0.83 \pm 0.05} is observed. For the charged particle pseudorapidity density at midrapidity we find a scaling as N_{part}^{1.07 \pm 0.04} and N_{coll}^{0.82 \pm 0.03}. This faster than linear scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.Comment: 13 pages, 16 figures, submitted to European Physical Journal C (revised results for scaling exponents

    Freeze-Out Parameters in Central 158AGeV Pb+Pb Collisions

    Get PDF
    Neutral pion production in central 158AGeV Pb+Pb collisions has been studied in the WA98 experiment at the CERN SPS. The pi0 transverse mass spectrum has been analyzed in terms of a thermal model with hydrodynamic expansion. The high accuracy and large kinematic coverage of the measurement allow to limit previously noted ambiguities in the extracted freeze-out parameters. The results are shown to be sensitive to the shape of the velocity distribution at freeze-out.Comment: 5 pages including 3 figures, small changes due to review process, accepted for publication in Phys.Rev.Let

    Direct Photon Production in 158 AGeV Pb+Pb Collisions

    Full text link
    A measurement of direct photon production in Pb+Pb collisions at 158 AGeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The results constitute the first observation of direct photons in ultrarelativistic heavy-ion collisions which could be significant for diagnosis of quark gluon plasma formation.Comment: Talk presented at Nucleus-Nucleus 2000, Strasbourg, Franc

    Technology of Healthy Processed Cheese Products Without Melting Salts with the Use of Freezing and Non-fermentative Catalysis

    Full text link
    Authors studied comprehensive influence of the processes of non–fermentative catalysis – cryomechanolysis and freezing of solid rennet cheeses during their preparation for melting, which leads to the cryodestruction of low–soluble paracaseinatcalciumphosphate nanocomplexes into soluble gel form. It was established that there occurs their cryodestruction and transformation of their significant part to the nanoform (by 45…55 %). A nanotechnology of healthy processed cheese products was developed. Mechanisms of the processes were revealed. It was established that during freezing and finely dispersed grinding of solid rennet cheeses before melting, there occurs cryomechanodestruction and non–fermentative cryocatalysis (destruction) of protein molecules to separate monomers – α–amino acids by 55… 60 %, that is a significant part of amino acid is transformed from the bound state to the free soluble form. A mechanism of the process was revealed; it was shown that in parallel with the destruction of nanocomplexes, nanoassociants of protein, its conformational changes take place: erasing molecules, decreasing in volume, shape, the ratio of hydrophobic and hydrophilic groups in a molecule, and filling the nucleus of a molecule with hydrophobic residues.Authors proposed and developed the cryogenic nanotechnology of manufacturing processed cheese products based on solid rennet cheeses without melting salts, which includes an integrated influence of freezing and finely dispersed grinding, non–fermentative catalysis. It was established that cheese products, produced by the nanotechnology (fillings for confectionery products "PanCake", dressing sauces, dipping sauces, ball shaped snacks) and enriched with herbal additives, exceed the known analogs in chemical composition. In addition, a large part of substances (as BAS and biopolymers) in cheese products is in the nanostructured form (55...60 % of protein) in the form of free amino acids.New technologies of healthy processed cheese products have been tested under production conditions at a number of the Ukrainian enterprises (TOV VKG "Lisova kazka", NVP "FIPAR", NVP "KRIAS–1"). The regulatory documentation (TU, TI for "cheese and vegetable fillings for confectionery products "PanCake" and "cheese dressing sauces") was developed and approved

    Research of the Mass Spectra of the Fission Products and Yields of (n, γ\gamma) and (n, 2n) Reactions in a Model Subcritical Uranium Blanket of the Electronuclear System "Energy Plus Transmutation" on Proton Beam of the Dubna Synchrophasotron at 1.5 Ge

    No full text
    This paper is devoted to the research of the spatial distributions of the yields of (n, f), (n, gamma) and (n, 2n) reactions in a two-section model of the uranium blanket electronuclear installation constructed at the Laboratory of High Energies, JINR (Dubna) for experiments according to the program "Research of physical aspects of the electronuclear method of energy production and of radioactive waste transmutation in atomic power-engineering on beams of the synchrophasotron and nuclotron" - project "Energy plus Transmutation". The mass spectrum of the fission products and yields of above reactions in uranium activation detectors placed on the radii of the so-called detector plates is determined. The experimental results testify that the fission of nuclei in the uranium blanket is made by fast neutrons. This conclusion coincides with the result obtained with track integrators of uranium fission
    corecore