808 research outputs found

    Marine tethysuchian crocodyliform from the ?Aptian-Albian (Lower Cretaceous) of the Isle of Wight, UK

    Get PDF
    A marine tethysuchian crocodyliform from the Isle of Wight, most likely from the Upper Greensand Formation (upper Albian, Lower Cretaceous), is described. However, we cannot preclude it being from the Ferruginous Sands Formation (upper Aptian), or more remotely, the Sandrock Formation (upper Aptian-upper Albian). The specimen consists of the anterior region of the right dentary, from the tip of the dentary to the incomplete fourth alveolus. This specimen increases the known geological range of marine tethysuchians back into the late Lower Cretaceous. Although we refer it to Tethysuchia incertae sedis, there are seven anterior dentary characteristics that suggest a possible relationship with the Maastrichtian-Eocene clade Dyrosauridae. We also review ‘middle’ Cretaceous marine tethysuchians, including putative Cenomanian dyrosaurids. We conclude that there is insufficient evidence to be certain that any known Cenomanian specimen can be safely referred to Dyrosauridae, as there are some cranial similarities between basal dyrosaurids and Cenomanian–Turonian marine ‘pholidosaurids’. Future study of middle Cretaceous tethysuchians could help unlock the origins of Dyrosauridae and improve our understanding of tethysuchian macroevolutionary trends

    Chapter 10 - Pleistocene Antarctic climate variability: ice sheet – ocean – climate interactions

    Get PDF
    During the Pleistocene, Earth experienced high-amplitude fluctuations in global temperature, atmospheric composition, ice sheet extent, and sea level that were forced by orbital variations in the seasonal distribution of solar energy across the planet. Subtle cyclical variations in forcing were greatly amplified by internal feedbacks in the Earth system, with processes in the polar regions influential for pole-to-equator temperature gradients and atmospheric carbon dioxide levels. Exploring the behaviour of the polar ice sheets and the Southern Ocean during this interval is crucial for understanding how the climate system operates and for constraining its sensitivity to future changes. Southern Ocean processes, including wind-driven upwelling, sea-ice formation, deep water production, and biological productivity, were instrumental in regulating Earth’s atmospheric carbon dioxide levels through Pleistocene glacial-interglacial cycles. On millennial timescales, rapid changes in ocean and atmospheric circulation were influenced by meltwater input from unstable ice sheet margins in both hemispheres, leading to highly variable regional and interhemispheric climate responses. This chapter provides an overview of the tools used in marine sediment and ice core archives to reconstruct Pleistocene changes in the Earth system. We discuss the mechanisms that controlled Earth’s climate over different timescales, and review the latest evidence that is revealing how the Antarctic Ice Sheet has both influenced and responded to Pleistocene climate change, including during intervals when Earth’s climate was similar to near-future projections. Despite experiencing ice volume changes that were modest in comparison to the advance and retreat of large Northern Hemisphere ice sheets, Antarctica has been a very active player in the ice sheet-ocean-climate system of the past 2.6 million years, and evidence increasingly suggests that it could respond dramatically to anthropogenic warming

    Opposing oceanic and atmospheric ENSO influences on the Ross Sea Region, Antarctica

    No full text
    International audienceHere we discuss the cause and effect of opposing atmospheric and oceanic ENSO forcings in the Ross Sea, that lead to a net warming in the eastern Ross Sea and a net cooling in the western Ross Sea during El Niño years. During La Niña years the opposite is observed. The oceanic ENSO effect causes a ~1 K warming with a 3 month lag during El Niño years in comparison to La Niña time periods. During El Niño events, the atmospheric ENSO effect leads to a shift and weakening of the Amundsen Sea Low, causing enhanced import of colder West Antarctic air masses into the western Ross Sea. We find that this indirect ENSO effect is about one order of magnitude stronger (up to 15 K) in the western Ross Sea than the direct effect (~1 K), leading to a net cooling during El Niño and net warming during La Niña events

    Isolated tooth reveals hidden spinosaurid dinosaur diversity in the British Wealden Supergroup (Lower Cretaceous)

    Get PDF
    Isolated spinosaurid teeth are relatively well represented in the Lower Cretaceous Wealden Supergroup of southern England, UK. Until recently it was assumed that these teeth were referable to Baryonyx, the type species (B. walkeri) and specimen of which is from the Barremian Upper Weald Clay Formation of Surrey. British spinosaurid teeth are known from formations that span much of the c. 25 Ma depositional history of the Wealden Supergroup, and recent works suggest that British spinosaurids were more taxonomically diverse than previously thought. On the basis of both arguments, it is appropriate to doubt the hypothesis that isolated teeth from outside the Upper Weald Clay Formation are referable to Baryonyx. Here, we use phylogenetic, discriminant and cluster analyses to test whether an isolated spinosaurid tooth (HASMG G369a, consisting of a crown and part of the root) from a non-Weald Clay Formation unit can be referred to Baryonyx. HASMG G369a was recovered from an uncertain Lower Cretaceous locality in East Sussex but is probably from a Valanginian exposure of the Hastings Group and among the oldest spinosaurid material known from the UK. Spinosaurid affinities are both quantitatively and qualitatively supported, and HASMG G369a does not associate with Baryonyx in any analysis. This supports recent reinterpretations of the diversity of spinosaurid in the Early Cretaceous of Britain, which appears to have been populated by multiple spinosaurid lineages in a manner comparable to coeval Iberian deposits. This work also reviews the British and global records of early spinosaurids (known mainly from dental specimens), and revisits evidence for post-Cenomanian spinosaurid persistence

    Prospects for radical emissions reduction through behaviour and lifestyle change

    Get PDF
    Over the past two decades, scholars and practitioners across the social sciences, in policy and beyond have proposed, trialled and developed a wide range of theoretical and practical approaches designed to bring about changes in behaviours and lifestyles that contribute to climate change. With the exception of the establishment of a small number of iconic behaviours such as recycling, it has however proved extremely difficult to bring about meaningful transformations in personal greenhouse gas emissions at either the individual or societal level, with multiple reviews now pointing to the limited efficacy of current approaches. We argue that the majority of approaches designed to achieve mitigation have been constrained by the need to operate within prevailing social scientific, economic and political orthodoxies which have precluded the possibility of non-marginal change. In this paper we ask what a truly radical approach to reducing personal emissions would look like from social science perspectives which challenge the unstated assumptions severely limiting action to date, and which explore new alternatives for change. We emphasise the difficulties likely to impede the instituting of genuinely radical societal change regarding climate change mitigation, whilst proposing ways that the ground could be prepared for such a transformation to take place

    A geological record of the last 14 million years of Antarctic climate and tectonic history from ANDRILL McMurdo Ice Shelf Project

    Get PDF
    During the Southern Hemisphere’s last summer, between October 29 and December 26, about 80 researchers, drillers, educators and support staff from four nations met in Antarctica to drill deeper than ever before into the Antarctic continental margin. With a recovery rate of 98 percent, the new core represents the longest and most complete geological record from the seafloor just off Antarctica. Researchers working on the project hope the core will help them understand Antarctica’s storied past

    Sedimentology and stratigraphy of the ANDRILL McMurdo Ice Shelf (AND-1B) core

    Get PDF
    During the 2006-2007 austral summer, the ANDRILL McMurdo Ice Shelf Project recovered a core 1285 m long (AND-1B) from Windless Bight in McMurdo Sound. This core contains a range of lithologies, including both siliciclastic and volcanic diamictites, sandstones and mudstones; diatomites; and volcanic ash/tuff and one phonolitic lava flow. This sequence has been subdivided into eight lithostratigraphic units and 25 subunits, based on lithological abundances. Eleven lithofacies have been identified, ranging from open marine diatomites and mudstones to turbidites to ice-proximal massive and stratified diamictites. More than 50 glacimarine sequences have been recognized, bounded by glacial surfaces of erosion. Three distinct stacking patterns are present, showing evidence of glacial advance/retreat/advance with varying degrees of preservation. Carbonate and pyrite are the dominant secondary phases in the core. The pyrite overprint is especially notable in volcanic sediments below ~400 mbsf, where it often obscures stratification and sediment texture

    Sedimentology and stratigraphy of the ANDRILL McMurdo Ice Shelf (AND-1B) core

    Get PDF
    During the 2006-2007 austral summer, the ANDRILL McMurdo Ice Shelf Project recovered a core 1285 m long (AND-1B) from Windless Bight in McMurdo Sound. This core contains a range of lithologies, including both siliciclastic and volcanic diamictites, sandstones and mudstones; diatomites; and volcanic ash/tuff and one phonolitic lava flow. This sequence has been subdivided into eight lithostratigraphic units and 25 subunits, based on lithological abundances. Eleven lithofacies have been identified, ranging from open marine diatomites and mudstones to turbidites to ice-proximal massive and stratified diamictites. More than 50 glacimarine sequences have been recognized, bounded by glacial surfaces of erosion. Three distinct stacking patterns are present, showing evidence of glacial advance/retreat/advance with varying degrees of preservation. Carbonate and pyrite are the dominant secondary phases in the core. The pyrite overprint is especially notable in volcanic sediments below ~400 mbsf, where it often obscures stratification and sediment texture

    A Record of Antarctic Climate and Ice Sheet History Recovered

    Get PDF
    Antarctica’s late Cenozoic (the past ~15 million years) climate history is poorly known from direct evidence, owing to its remoteness, an extensive sea ice apron, and an ice sheet cover over the region for the past 34 million years. Consequently, knowledge about the role of Antarctica’s ice sheets in global sea level and climate has relied heavily upon interpretations of oxygen isotope records from deep-sea cores. Whereas these isotopic records have revolutionized our understanding of climate-ice-ocean interactions, questions still remain about the specific role of Antarctic ice sheets in global climate. Such questions can be addressed from geological records at the marine margin of the ice sheets, recovered by drilling from floating ice platforms [e.g., Davey et al., 2001; Harwood et al., 2006; Barrett, 2007]. During the austral summer of 2006–2007, a new Antarctic geological drilling program (ANDRILL) successfully recovered a 1285- meter-long record of climate and ice sheet variability spanning the past 13 million years from beneath the McMurdo Ice Shelf (Figure 1). The cores contain sedimentary rocks deposited by the ice sheets grounded in the sea, and they provide the best direct evidence to date of past Antarctic ice sheet and climate fluctuations for this period of Earth’s history. The new geological evidence is being used to provide direct physical calibrationfor deep-sea isotope records, low-latitude continental margin sea level records, and numerical climate and ice sheet models, especially for times of past global warmth. Such analogs are becoming increasingly important because of the difficulties in predicting the dynamic response of ice sheets to global warming [Vaughan and Athern, 2007]. In this article we summarize the initial results of the ANDRILL program’s first drilling project from the McMurdo Ice Shelf (MIS) site [Naish et al., 2007a, 2007b], with an emphasis on the potential of the record for improving our knowledge of Antarctica’s influence on, and response to, global climate change

    Dynamic contrast-enhanced MRI of synovitis in knee osteoarthritis: repeatability, discrimination and sensitivity to change in a prospective experimental study

    Get PDF
    OBJECTIVES: Evaluate test-retest repeatability, ability to discriminate between osteoarthritic and healthy participants, and sensitivity to change over 6 months, of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarkers in knee OA. METHODS: Fourteen individuals aged 40-60 with mild-moderate knee OA and 6 age-matched healthy volunteers (HV) underwent DCE-MRI at 3 T at baseline, 1 month and 6 months. Voxelwise pharmacokinetic modelling of dynamic data was used to calculate DCE-MRI biomarkers including Ktrans and IAUC60. Median DCE-MRI biomarker values were extracted for each participant at each study visit. Synovial segmentation was performed using both manual and semiautomatic methods with calculation of an additional biomarker, the volume of enhancing pannus (VEP). Test-retest repeatability was assessed using intraclass correlation coefficients (ICC). Smallest detectable differences (SDDs) were calculated from test-retest data. Discrimination between OA and HV was assessed via calculation of between-group standardised mean differences (SMD). Responsiveness was assessed via the number of OA participants with changes greater than the SDD at 6 months. RESULTS: Ktrans demonstrated the best test-retest repeatability (Ktrans/IAUC60/VEP ICCs 0.90/0.84/0.40, SDDs as % of OA mean 33/71/76%), discrimination between OA and HV (SMDs 0.94/0.54/0.50) and responsiveness (5/1/1 out of 12 OA participants with 6-month change > SDD) when compared to IAUC60 and VEP. Biomarkers derived from semiautomatic segmentation outperformed those derived from manual segmentation across all domains. CONCLUSIONS: Ktrans demonstrated the best repeatability, discrimination and sensitivity to change suggesting that it is the optimal DCE-MRI biomarker for use in experimental medicine studies. KEY POINTS: • Dynamic contrast-enhanced MRI (DCE-MRI) provides quantitative measures of synovitis in knee osteoarthritis which may permit early assessment of efficacy in experimental medicine studies. • This prospective observational study compared DCE-MRI biomarkers across domains relevant to experimental medicine: test-retest repeatability, discriminative validity and sensitivity to change. • The DCE-MRI biomarker Ktrans demonstrated the best performance across all three domains, suggesting that it is the optimal biomarker for use in future interventional studies
    • …
    corecore