2,104 research outputs found
Cine-forum: “La felicidad en el séptimo arte"
Comunicación presentada en el Curso "La felicidad humana", dentro de los Cursos de verano UBU 201
Anisotropic Electronic Structure of the Kondo Semiconductor CeFe2Al10 Studied by Optical Conductivity
We report temperature-dependent polarized optical conductivity
[] spectra of CeFeAl, which is a reference material
for CeRuAl and CeOsAl with an anomalous magnetic
transition at 28 K. The spectrum along the b-axis differs
greatly from that in the -plane, indicating that this material has an
anisotropic electronic structure. At low temperatures, in all axes, a shoulder
structure due to the optical transition across the hybridization gap between
the conduction band and the localized states, namely -
hybridization, appears at 55 meV. However, the gap opening temperature and the
temperature of appearance of the quasiparticle Drude weight are strongly
anisotropic indicating the anisotropic Kondo temperature. The strong
anisotropic nature in both electronic structure and Kondo temperature is
considered to be relevant the anomalous magnetic phase transition in
CeRuAl and CeOsAl.Comment: 5 pages, 4 figure
Room temperature ferromagnetic behavior in the hollandite-type titanium oxide
A hollandite-type K(x)Ti(8)O(16) polycrystalline sample has been prepared and studied by magnetization, resistivity and x-ray photoelectron spectroscopy (XPS). Room temperature ferromagnetic behavior is observed in the magnetic hysteresis measurement. The sample shows a semiconductive temperature dependence in the resistivity measurement. Analysis of the Ti 2p(3/2) core-level XPS spectrum indicates that the titanium ions have a mixed valence of Ti(4+) and Ti(3+). In addition, the valence band spectrum reveals that the 3d electrons tend to localize on Ti(3+) ions in the hollandite-type TiO(2) lattice. Also, analysis of the valence band spectrum shows that the prepared sample is a wide-gap oxide with a band gap of 3.6 eV. These results indicate that the present hollandite-type K(x)Ti(8)O(16) sample can be classified as a TiO(2)-based wide-gap semiconductor with Curie temperature above room temperature. Room temperature ferromagnetism (RTFM) decreases in the sample prepared under a strong reducing gas atmosphere, accompanied with the decrease in the resistivity. The results imply that the localized 3d electrons are responsible for the RTFM of the K(x)Ti(8)O(16) sample
Electronic structures of CrX (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism
Cr 2p core excited XAS and XMCD spectra of ferromagnetic CrTe
with several concentrations of =0.11-0.33 and ferrimagnetic
CrS have been measured. The observed XMCD lineshapes are found to
very weakly depend on for CrTe. The experimental results
are analyzed by means of a configuration-interaction cluster model calculation
with consideration of hybridization and electron correlation effects. The
obtained values of the spin magnetic moment by the cluster model analyses are
in agreement with the results of the band structure calculation.The calculated
result shows that the doped holes created by the Cr deficiency exist mainly in
the Te 5porbital of CrTe, whereas the holes are likely to be in Cr
3d state for CrS.Comment: 8 pages, 6 figures, accepted for publication in Physical Review
Synchronization in Scale Free networks: The role of finite size effects
Synchronization problems in complex networks are very often studied by
researchers due to its many applications to various fields such as
neurobiology, e-commerce and completion of tasks. In particular, Scale Free
networks with degree distribution , are widely used in
research since they are ubiquitous in nature and other real systems. In this
paper we focus on the surface relaxation growth model in Scale Free networks
with , and study the scaling behavior of the fluctuations, in
the steady state, with the system size . We find a novel behavior of the
fluctuations characterized by a crossover between two regimes at a value of
that depends on : a logarithmic regime, found in previous
research, and a constant regime. We propose a function that describes this
crossover, which is in very good agreement with the simulations. We also find
that, for a system size above , the fluctuations decrease with
, which means that the synchronization of the system improves as
increases. We explain this crossover analyzing the role of the
network's heterogeneity produced by the system size and the exponent of the
degree distribution.Comment: 9 pages and 5 figures. Accepted in Europhysics Letter
VVV Survey Observations of a Microlensing Stellar Mass Black Hole Candidate in the Field of the Globular Cluster NGC 6553
We report the discovery of a large timescale candidate microlensing event of
a bulge stellar source based on near-infrared observations with the VISTA
Variables in the Via Lactea Survey (VVV). The new microlensing event is
projected only 3.5 arcmin away from the center of the globular cluster NGC
6553. The source appears to be a bulge giant star with magnitude Ks = 13.52,
based on the position in the color-magnitude diagram. The foreground lens may
be located in the globular cluster, which has well-known parameters such as
distance and proper motions. If the lens is a cluster member, we can directly
estimate its mass simply following Paczynski et al. (1996) which is a modified
version of the more general case due to Refsdal. In that case, the lens would
be a massive stellar remnant, with M = 1.5-3.5 Msun. If the blending fraction
of the microlensing event appears to be small, and this lens would represent a
good isolated black hole (BH) candidate, that would be the oldest BH known.
Alternative explanations (with a larger blending fraction) also point to a
massive stellar remnant if the lens is located in the Galactic disk and does
not belong to the globular cluster.Comment: 5 pages, 3 figures, 1 table, accepted for publication in ApJ
Itinerant ferromagnetism in half-metallic CoS_2
We have investigated electronic and magnetic properties of the pyrite-type
CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have
obtained the ferromagnetic ground state with nearly half-metallic nature. The
half-metallic stability is studied by using the fixed spin moment method. The
non-negligible orbital magnetic moment of Co 3d electrons is obtained as in the local spin density approximation (LSDA). The calculated
ratio of the orbital to spin angular momenta / = 0.15 is
consistent with experiment. The effect of the Coulomb correlation between Co 3d
electrons is also explored with the LSDA + U method. The Coulomb correlation at
Co sites is not so large, eV, and so CoS_2 is possibly
categorized as an itinerant ferromagnet. It is found that the observed
electronic and magnetic behaviors of CoS_2 can be described better by the LSDA
than by the LSDA + U.Comment: 4 pages, 3 postscript figure
- …
