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Abstract – Synchronization problems in complex networks are very often studied by researchers
due to their many applications to various fields such as neurobiology, e-commerce and completion
of tasks. In particular, scale-free networks with degree distribution P (k) ∼ k−λ, are widely used
in research since they are ubiquitous in Nature and other real systems. In this paper we focus
on the surface relaxation growth model in scale-free networks with 2.5 < λ < 3, and study the
scaling behavior of the fluctuations, in the steady state, with the system size N . We find a
novel behavior of the fluctuations characterized by a crossover between two regimes at a value of
N = N∗ that depends on λ: a logarithmic regime, found in previous research, and a constant
regime. We propose a function that describes this crossover, which is in very good agreement with
the simulations. We also find that, for a system size above N∗, the fluctuations decrease with
λ, which means that the synchronization of the system improves as λ increases. We explain this
crossover analyzing the role of the network’s heterogeneity produced by the system size N and
the exponent of the degree distribution.

Copyright c© EPLA, 2015

Since a great variety of systems can be represented by
complex networks, over the last decades many researchers
have studied both the topology and processes that evolve
on top of these networks. Systems such as neural net-
works, the Internet and airlines networks [1–3] can be de-
scribed by a set of nodes connected by links that represent
a relationship between them, such as an electric impulse,
friendship or air traffic. Many of these real networks were
found to be characterized by a scale-free (SF) topology,
given by a degree distribution

P (k) ∼ k−λ, (1)

where k is the degree of the nodes and m ≤ k ≤ kmax,
where m and kmax are the minimum and maximum de-
gree, respectively, and λ represents the broadness of the
distribution. On most real systems, such as the World
Wide Web or metabolic networks, it was found that 2 <
λ < 3 [1,2].

More recently, research has focused on dynamical pro-
cesses taking place on the underlying network [4–10]. Par-
ticularly, many mathematical and numerical models have

been elaborated to study the problem of synchroniza-
tion [11–16], a phenomenon present in the behavior of
many collective systems. In these processes the state of the
system evolves to a synchronized state, where the coupled
units adjust their dynamics with one another. Examples of
synchronization can be seen in brain processes [17] or data
distribution [18–20]; in a network made up of processors
that distribute the task load, the system is best synchro-
nized when the process minimizes the waiting time in each
processor. For these kinds of systems, a scalar field h is
usually defined on the network and it is of interest to mea-
sure the fluctuations of h. This problem can be studied
mapping it into a non-equilibrium surface growth prob-
lem, where the scalar field hi, with i = 1, . . . , N and N
the system size, represents the “height” of the node i, and
the fluctuations, also called roughness of the system, are
given by

W (t) =

√

√

√

√

1

N

N
∑

i=1

[hi(t) − 〈h(t)〉]2, (2)
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Fig. 1: (Colour on-line) (a) Ws as a function of N in a linear-log scale, with λ = 2.6 (◦), 2.8 (�), 3.0 (∗). We observe two
regimes so that Ws behaves as ∼ ln N for N smaller than a certain characteristic size N∗, and it increases at a slower rate for
N > N∗, finally becoming constant for a sufficiently large N . (b) Ws as a function of N in a linear-log scale for λ = 2.6. It can
be seen how we obtain the characteristic system size N∗ for the intersection of the two regimes.

and

〈h(t)〉 =
1

N

N
∑

i=1

hi(t) (3)

is the mean value of h at time t. The roughness has two
regimes, one where W (t) increases until it saturates at a
constant value Ws in the second regime, which depends on
the topology of the system. In Euclidean lattices one of the
most studied equations on surface growth is the Edwards-
Wilkinson (EW) equation [21], which belongs to the same
universality class as that of the stochastic growth model
of surface relaxation to the minimum (SRM) [22]. In this
model, a node of the network is randomly selected and
a “particle” is placed on the node with the lowest height
among the selected node and its neighbors. According to
this rule, the nodes with higher heights distribute their
excess of particles to their neighbors with lower heights.
Pastore y Piontti et al. [12] studied the SRM model on SF
networks through numerical simulations and found that,
on the steady state, the behavior of the fluctuations with
the system size N is given by

Ws ∼

{

const, for λ ≥ 3;

lnN, for λ < 3.
(4)

Unlike Euclidean lattices, in complex networks one cannot
extend the discrete nature of the network to a continuum,
and thus the dynamics of the network are not well repre-
sented by a continuum equation such as the EW equation.
However, using a discrete Laplacian and a mean-field ap-
proximation, Korniss et al. [13] and Guclu et al. [23] found
that in the limit N → ∞, Ws increases with λ. Solving the
discrete EW equation numerically for finite-size systems,
in [12] the authors found that Ws decreases with N , which
is not representative of any growth model. With a differ-
ent approach, La Rocca et al. [14] developed a Langevin
stochastic equation that describes the evolution of the in-
terface, and solved it up to second order by numerical
integration for finite system sizes, recovering eq. (4).

In this letter we mainly consider SF networks with λ < 3
because they are representative of abundant systems in

Nature. We find that, for the SRM model, Ws has a
crossover from a logarithmic regime to constant regime,
at a characteristic value of N that depends on the topol-
ogy of the network. Also, we find that, for system sizes
above this characteristic size, Ws increases as λ decreases.

By stochastic numerical simulations, we study the SRM
process on SF networks. To generate the network, we
use the Molloy Reed (MR) algorithm or configurational
model [24] and we use a minimum degree m = 2 because
for this value we have a high probability of obtaining only
one component and thus a single interface [25]. As for the
maximum degree, the network has a natural cut-off given

by kc ∼ N
1

λ−1 [24] and no structural cut-off is imposed,
although this alternative will be discussed later. We de-
fine a scalar field h on the network, which represents the
system’s feature we want to study, so that each node is
assigned a height hi, with i = 1, . . . , N . At t = 0, we
allocate the nodes with a random height between 0 and 1.
This initial condition does not affect the scaling behavior
of the roughness in its steady state. At each time step,
we deposit a particle on a node randomly selected with a
probability 1/N . Denoting the selected node by i and the
set of its ki neighbors by vi, we simulate the SRM process
according to the following rules:

1) if hi < hj ∀ j ǫ vi ⇒ hi = hi + 1,

2) else, l ∈ vi : hl < hi and hl < hj ∀ j �= l, j ǫ vi ⇒
hl = hl + 1,

and compute the roughness at the saturation as a function
of the system size.

In fig. 1(a) we plot the fluctuations Ws as a function of
N for different values of λ. We can see that for λ = 3
we obtain the behavior predicted by eq. (4), i.e., the fluc-
tuations go rapidly to a constant when the system size
increases. For λ < 3 and for a range of system sizes
(N � 103), the behavior of Ws is logarithmic, which agrees
with eq. (4), but when N increases, the fluctuations in-
crease slower than a logarithmic, reaching a constant that
is independent of N and only depends on λ. The scaling

66001-p2



Synchronization in scale-free networks: The role of finite-size effects

2,6 2,65 2,7 2,75 2,8 2,85

λ

10
4

10
5

N
*

Fig. 2: (Colour on-line) N∗ as a function of λ, for SF networks
with 2.6 ≤ λ < 2.9 with m = 2.

behavior of Ws suggests that above a certain system size
N = N∗ (which depends only on λ), the fluctuations be-
come independent of N and therefore the system has the
same degree of synchronization. It is worth noticing that
the second regime was not seen in [12] since in their re-
search the authors simulated systems smaller than N∗.

We then estimate the system size for which the behavior
of the fluctuations changes from a logarithmic regime to a
constant, i.e., the crossover between these two regimes. In
fig. 1(b) we plot Ws as a function of N only for λ = 2.6 in
order to show how N∗ is determined. We compute N∗ for
different values of λ, and we see that N∗ decreases with λ
for λ < 3, and N∗ → 0 for λ ≥ 3, as can be seen in fig. 2.

The behavior of Ws with N can be described as follows:

Ws ∼

{

b ln(N), for N < N∗;

W∞

s , for N > N∗,

where b ≡ b(λ) and W∞

s ≡ W∞

s (λ) is the roughness value
in the thermodynamic limit (above N∗). Thus, we propose
a scaling function f(N/N∗) where

f(N/N∗) ∼

{

ln(N/N∗), for N/N∗ < 1;

0, for N/N∗ > 1.
(5)

Then, the behavior of Ws for all the values of N can be
expressed as

Ws = W∞

s + b f(N/N∗).

To lose all dependence on λ, we work with the expression
(Ws

∞ − Ws)/b so that

(W∞

s − Ws)/b ∼ −f(N/N∗) ∼
{

−ln(N/N∗), for N/N∗ < 1;

0, for N/N∗ > 1.

In fig. 3 we plot (W∞

s − Ws)/b as a function of N/N∗.
From the plot we can see that the curves indeed overlap,
which shows that our scaling hypothesis is correct.

To understand the dynamics of the system as N in-
creases, we study the behavior of the fluctuations relative
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Fig. 3: (Colour on-line) (W ∞

s − Ws)/b as a function of N/N∗

in a linear-log scale for λ = 2.6 (⋄), 2.7 (⊳) and 2.8 (◦). The
curves overlap, which proves the scaling hypothesis given by
eq. (5) correct.
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Fig. 4: (Colour on-line) hk − 〈h〉 as a function of k for N =
6044 (◦), 32768 (�), 500000 (⋄) and 1000000 (△), and λ = 2.6.
The inset is an enlargement for small values of k; it can be seen
that hk − 〈h〉 does not depend on N in this region.

to the topology of the network, specifically the degree of
the nodes. We compute the mean height of the nodes
with degree k, denoted by hk. In fig. 4 we show hk − 〈h〉
as a function of k for λ = 2.6 and different values of N ,
below and above N∗. We see that, in average, the differ-
ence between the height of the nodes and the mean value
of the entire network, increases with k. Thus, for the
SRM model, nodes with high degree worsen synchroniza-
tion while small-degree nodes improve it. This is because
the nodes with high degree receive the excess of particles
of their low-degree neighbors, which are the majority in
SF networks. In order to understand the effect of the
high-degree nodes on the behavior of Ws, we study the
SRM process for a network with a structural cut-off of
ks ∼ N1/2 [26,27], which is smaller than kc for λ < 3 (not
shown here). For this case, we also find a crossover be-
tween two regimes at a characteristic size, although it is
larger than the one found with no structural cut-off. This
means that the hubs contribute to the finite-size effects for
N ≪ N∗ with λ < 3.

We also notice that the behavior of hk−〈h〉 does not de-
pend on N for small k, which means that low-degree nodes
do not contribute to finite-size effects on Ws. However, for
larger k, hk − 〈h〉 increases with N . As k increases, the
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rate of increase of hk − 〈h〉 decreases, so that the nodes
have heights more similar to one another. This behavior,
combined with the fact that the probability of high con-
nectivities is very low, determines that nodes with high
degree do not contribute to an increase in the fluctuations
for N ≫ N∗. Due to this combined effect Ws approaches
to a constant for N ≫ N∗. On the other hand, as λ in-
creases, the ratio of small-degree nodes to hubs increases.
This explains why, around the value of N∗, the synchro-
nization improves as λ increases. This can be seen from
fig. 1, where N∗ decreases as λ → 3 and, consequently,
the constant value to which Ws approaches gets smaller,
which means that the system synchronizes better for in-
creasing λ.

To summarize, we studied the behavior of the fluctua-
tions Ws with the system size N in the steady state for
the SRM model in SF networks with 2.5 < λ < 3, aiming
to understand the role of finite-size effects in the system’s
synchronization. We found a crossover between two dif-
ferent regimes at a characteristic size N∗ below which Ws

has a logarithmic dependence on N and above which Ws

is constant. We measured N∗ for different values of λ and
found that N∗ decreases with λ. We also found that the
synchronization enhances as λ increases. The behavior of
Ws with N and λ is determined by the performance of
high-degree nodes in the dynamics of the system, which
reach heights above the mean value and worsen the syn-
chronization. However, the rate of increase of the heights
compared with the average height decreases with k and,
given that the degree distribution also decreases with k, we
conclude that high-degree nodes do not contribute to an
increase of Ws for N ≫ N∗. It is important to mention
that even though high-degree nodes are the responsible
for the finite-size effects observed for N < N∗, the expla-
nation of the logarithmic behavior of Ws goes beyond the
aim of our actual research. However, this will be the scope
of future researches. As for the heterogeneity of the net-
work, as λ increases, the proportion of high-degree nodes
decreases and the previous effect is noted for smaller sys-
tem sizes. In the limit λ → 3, N∗ → 0 and Ws is constant
for all N .
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