81 research outputs found

    cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner

    Get PDF
    cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior

    Opposite macrophage polarization in different subsets of ovarian cancer: observation from a pilot study

    Get PDF
    The role of the innate immune system in ovarian cancer is gaining importance. The relevance of tumor-associated macrophages (TAM) is insufficiently understood. In this pilot project, comprising the immunofluorescent staining of 30 biopsies taken from 24 patients with ovarian cancer, we evaluated the presence of total TAM (cluster of differentiation (CD) 68 expression), M1 (major histocompatibility complex (MHC) II expression), and M2 (anti-mannose receptor C type 1 (MRC1) expression), and the blood vessel diameter. We observed a high M1/M2 ratio in low-grade ovarian cancer compared to high-grade tumors, more total TAM and M2 in metastatic biopsies, and a further increase in total TAM and M2 at interval debulking, without beneficial effects of bevacizumab. The blood vessel diameter was indicative for M2 tumor infiltration (Spearman correlation coefficient of 0.65). These data mainly reveal an immune beneficial environment in low-grade ovarian cancer in contrast to high-grade serous ovarian cancer, where immune suppression is not altered by neoadjuvant therapy

    Long-lived tumor-associated macrophages in glioma

    Get PDF
    BACKGROUND: The tumor microenvironment (TME) plays a major tumor-supportive role in glioma. In particular, tumor-associated macrophages (TAMs), which can make up to one third of the tumor mass, actively support tumor growth, invasion and angiogenesis. Predominantly alternatively activated (M2-polarized) TAMs are found in late stage glioma in both human and mouse tumors, as well as in relapse samples from patients. However, whether tumor-educated M2 TAMs can actively contribute to the emergence and growth of relapse is currently debated. METHODS: To investigate whether tumor-educated stromal cells remaining in the brain after surgical removal of the primary tumor can be long-lived and retain their tumor-supporting function, we developed a transplantation mouse model and performed lineage-tracing. RESULTS: We discovered that macrophages can survive transplantation and stay present in the tumor much longer than previously suggested, while sustaining an M2 polarized pro-tumorigenic phenotype. Transplanted tumors showed a more aggressive growth and faster polarization of the TAMs toward an M2 phenotype compared to primary tumors, a process dependent on the presence of few co-transplanted macrophages. CONCLUSIONS: Overall, we propose a new way for tumor-educated TAMs to contribute to glioma aggressiveness by long survival and stable pro-tumorigenic features. These properties could have a relapse-supporting effect

    Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth

    Get PDF
    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences

    Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke

    Get PDF
    AIMS: Given the impact of vascular injuries and oedema on brain damage caused during stroke, vascular protection represents a major medical need. We hypothesized that angiopoietin-like 4 (ANGPTL4), a regulator of endothelial barrier integrity, might exert a protective effect during ischaemic stroke. METHODS AND RESULTS: Using a murine transient ischaemic stroke model, treatment with recombinant ANGPTL4 led to significantly decreased infarct size and improved behaviour. Quantitative characteristics of the vascular network (density and branchpoints) were preserved in ANGPTL4-treated mice. Integrity of tight and adherens junctions was also quantified and ANGPTL4-treated mice displayed increased VE-cadherin and claudin-5-positive areas. Brain oedema was thus significantly decreased in ANGPTL4-treated mice. In accordance, vascular damage and infarct severity were increased in angptl4-deficient mice thus providing genetic evidence that ANGPTL4 preserves brain tissue from ischaemia-induced alterations. Altogether, these data show that ANGPTL4 protects not only the global vascular network, but also interendothelial junctions and controls both deleterious inflammatory response and oedema. Mechanistically, ANGPTL4 counteracted VEGF signalling and thereby diminished Src-signalling downstream from VEGFR2. This led to decreased VEGFR2-VE-cadherin complex disruption, increased stability of junctions and thus increased endothelial cell barrier integrity of the cerebral microcirculation. In addition, ANGPTL4 prevented neuronal loss in the ischaemic area. CONCLUSION: These results, therefore, show ANGPTL4 counteracts the loss of vascular integrity in ischaemic stroke, by restricting Src kinase signalling downstream from VEGFR2. ANGPTL4 treatment thus reduces oedema, infarct size, neuronal loss, and improves mice behaviour. These results suggest that ANGPTL4 constitutes a relevant target for vasculoprotection and cerebral protection during stroke

    Vascular and liver homeostasis in juvenile mice require endothelial cyclic AMP-dependent protein kinase A

    Get PDF
    During vascular development, endothelial cAMP-dependent protein kinase A (PKA) regulates angiogenesis by controlling the number of tip cells, and PKA inhibition leads to excessive angiogenesis. Whether this role of endothelial PKA is restricted to embryonic and neonatal development or is also required for vascular homeostasis later on is unknown. Here, we show that perinatal (postnatal days P1-P3) of later (P28-P32) inhibition of endothelial PKA using dominant-negative PKA expressed under the control of endothelial-specific Cdh5-CreERT2 recombinase (dnPKA(iEC) mice) leads to severe subcutaneous edema, hypoalbuminemia, hypoglycemia and premature death. These changes were accompanied by the local hypersprouting of blood vessels in fat pads and the secondary enlargement of subcutaneous lymphatic vessels. Most noticeably, endothelial PKA inhibition caused a dramatic disorganization of the liver vasculature. Hepatic changes correlated with decreased gluconeogenesis, while liver albumin production seems to be unaffected and hypoalbuminemia is rather a result of increased leakage into the interstitium. Interestingly, the expression of dnPKA only in lymphatics using Prox1-CreERT2 produced no phenotype. Likewise, the mosaic expression in only endothelial subpopulations using Vegfr3-CreERT2 was insufficient to induce edema or hypoglycemia. Increased expression of the tip cell marker ESM1 indicated that the inhibition of PKA induced an angiogenic response in the liver, although tissue derived pro- and anti-angiogenic factors were unchanged. These data indicate that endothelial PKA is a gatekeeper of endothelial cell activation not only in development but also in adult homeostasis, preventing the aberrant reactivation of the angiogenic program

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Emerging single cell endothelial heterogeneity supports sprouting tumour angiogenesis and growth

    Get PDF
    Blood vessels supplying tumors are often dysfunctional and generally heterogeneous. The mechanisms underlying this heterogeneity remain poorly understood. Here, using multicolor lineage tracing, in vivo time-lapse imaging and single cell RNA sequencing in a mouse glioma model, we identify tumour-specific blood endothelial cells that originate from cells expressing the receptor for colony stimulating factor 1, Csf1r, a cytokine which controls macrophage biology. These Csf1r lineage endothelial cells (CLECs) form up to 10% of the tumour vasculature and express, besides classical blood endothelial cell markers, a gene signature that is distinct from brain endothelium but shares similarities with lymphatic endothelial cell populations. in silico analysis of pan-cancer single cell RNAseq datasets highlights the presence of a comparable subpopulation in the endothelium of a wide spectrum of human tumours. We show that CLECs actively contribute to sprouting and remodeling of tumour blood vessels and that selective depletion of CLECs reduces vascular branching and tumour growth. Our findings indicate that a non-tumour resident Csf1r-positive population is recruited to tumours, differentiates into blood endothelial cells to contribute to vascularization and, thereby, tumour growth

    The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit <it>in vitro </it>and <it>in vivo </it>the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop.</p> <p>Methods</p> <p>A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. <it>In vitro</it>, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. <it>In vivo</it>, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. <it>In vivo </it>anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay.</p> <p>Results</p> <p>Using pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. <it>In vitro</it>, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an <it>in vivo </it>Matrigel™ plug assay in mice</p> <p>Conclusions</p> <p>Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on <it>in vitro </it>and <it>in vivo </it>growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPβ/ζ, nucleolin). <it>In vivo</it>, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.</p
    • …
    corecore