2,043 research outputs found
Black Hole Feedback On The First Galaxies
We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.Astronom
Synchronous colorectal liver metastasis: A network meta-analysis review comparing classical, combined, and liver-first surgical strategies.
BACKGROUND: In recent years, the management of synchronous colorectal liver metastasis has changed significantly. Alternative surgical strategies to the classical colorectal-first approach have been proposed. These include the liver-first and combined resections approaches. The objectives of this review were to compare the short- and long-term outcomes for all three approaches.
METHODS: A systematic review of comparative studies was performed. Evaluated endpoints included surgical outcomes (5-year overall survival, 30-day mortality, and post-operative complications). Pair-wise and network meta-analysis (NMA) were performed to compare survival outcomes.
RESULTS: Eighteen studies were included in this review, reporting on 3,605 patients. NMA and pair-wise meta-analysis of the 5-year overall survival did not show significant difference between the three surgical approaches: combined versus colorectal-first, mean odds ratio (OR) 1.02 (95% CI 0.8-1.28, P = 0.93); liver-first versus colorectal-first, mean OR 0.81 (95% CI 0.53-1.26, P = 0.37); liver-first versus combined, mean OR 0.80 (95% CI 0.52-1.24, P = 0.41). In addition NMA of the 30-day mortality among the three approaches also did not observe statistical difference. Analysis of variance showed that mean post-operative complications of all approaches were comparable (P = 0.51).
CONCLUSION: There are considerable differences in the peri-operative management of synchronous CLM patients. This meta-analysis demonstrated no clear statistical surgical outcome or survival advantage towards any of the three approaches. J. Surg. Oncol. © 2014 Wiley Periodicals, Inc
Recommended from our members
Nonlocal dielectric function and nested dark excitons in MoS2
Their exceptional optical properties are a driving force for the persistent interest in atomically thin transition metal dichalcogenides such as MoS2. The optical response is dominated by excitons. Apart from the bright excitons, which directly couple to light, it has been realized that dark excitons, where photon absorption or emission is inhibited by the spin state or momentum mismatch, are decisive for many optical properties. However, in particular the momentum dependence is difficult to assess experimentally and often remains elusive or is investigated by indirect means. Here we study the momentum dependent electronic structure experimentally and theoretically. We use angle-resolved photoemission as a one-particle probe of the occupied valence band structure and electron energy loss spectroscopy as a two-particle probe of electronic transitions across the gap to benchmark a single-particle model of the dielectric function ϵ(q, ω) against momentum dependent experimental measurements. This ansatz captures key aspects of the data surprisingly well. In particular, the energy region where substantial nesting occurs, which is at the origin of the strong light–matter interaction of thin transition metal dichalcogenides and crucial for the prominent C-exciton, is described well and spans a more complex exciton landscape than previously anticipated. Its local maxima in (q≠0,ω) space can be considered as dark excitons and might be relevant for higher order optical processes. Our study may lead to a more complete understanding of the optical properties of atomically thin transition metal dichalcogenides
System Response Kernel Calculation for List-mode Reconstruction in Strip PET Detector
Reconstruction of the image in Positron Emission Tomographs (PET) requires
the knowledge of the system response kernel which describes the contribution of
each pixel (voxel) to each tube of response (TOR). This is especially important
in list-mode reconstruction systems, where an efficient analytical
approximation of such function is required. In this contribution, we present a
derivation of the system response kernel for a novel 2D strip PET.Comment: 10 pages, 2 figures; Presented at Symposium on applied nuclear
physics and innovative technologies, Cracow, 03-06 June 201
Unique and Universal Features of Epsilonproteobacterial Origins of Chromosome Replication and DnaA-DnaA Box Interactions
In bacteria, chromosome replication is initiated by the interaction of the initiator protein DnaA with a defined region of a chromosome at which DNA replication starts (oriC). While DnaA proteins share significant homology regardless of phylogeny, oriC regions exhibit more variable structures. The general architecture of oriCs is universal, i.e., they are composed of a cluster of DnaA binding sites, a DNA-unwinding element, and sequences that bind regulatory proteins. However, detailed structures of oriCs are shared by related species while being significantly different in unrelated bacteria. In this work, we characterized Epsilonproteobacterial oriC regions. Helicobacter pylori was the only species of the class for which oriC was characterized. A few unique features were found such as bipartite oriC structure, not encountered in any other Gram-negative species, and topology-sensitive DnaA-DNA interactions, which have not been found in any other bacterium. These unusual H. pylori oriC features raised questions of whether oriC structure and DnaA-DNA interactions are unique to this bacterium or whether they are common to related species. By in silico and in vitro analyses we identified putative oriCs in three Epsilonproteobacterial species: pathogenic Arcobacter butzleri, symbiotic Wolinella succinogenes, and free-living Sulfurimonas denitrificans. We propose that oriCs typically co-localize with ruvC-dnaA-dnaN in Epsilonproteobacteria, with the exception of Helicobacteriaceae species. The clusters of DnaA boxes localize upstream (oriC1) and downstream (oriC2) of dnaA, and they likely constitute bipartite origins. In all cases, DNA unwinding was shown to occur in oriC2. Unlike the DnaA box pattern, which is not conserved in Epsilonproteobacterial oriCs, the consensus DnaA box sequences and the mode of DnaA-DnaA box interactions are common to the class. We propose that the typical Epsilonproteobacterial DnaA box consists of the core nucleotide sequence 5'-TTCAC-3' (4-8 nt), which, together with the significant changes in the DNA-binding motif of corresponding DnaAs, determines the unique molecular mechanism of DnaA-DNA interaction. Our results will facilitate identification of oriCs and subsequent identification of factors which regulate chromosome replication in other Epsilonproteobacteria. Since replication is controlled at the initiation step, it will help to better characterize life cycles of these species, many of which are considered as emerging pathogens
A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays
All of the present methods for calibration and monitoring of TOF-PET scanner
detectors utilize radioactive isotopes such as e.g. Na or Ge,
which are placed or rotate inside the scanner. In this article we describe a
novel method based on the cosmic rays application to the PET calibration and
monitoring methods. The concept allows to overcome many of the drawbacks of the
present methods and it is well suited for newly developed TOF-PET scanners with
a large longitudinal field of view. The method enables also monitoring of the
quality of the scintillator materials and in general allows for the continuous
quality assurance of the PET detector performance.Comment: 10 pages, 7 figure
Application of Compressive Sensing Theory for the Reconstruction of Signals in Plastic Scintillators
Compressive Sensing theory says that it is possible to reconstruct a measured
signal if an enough sparse representation of this signal exists in comparison
to the number of random measurements. This theory was applied to reconstruct
signals from measurements of plastic scintillators. Sparse representation of
obtained signals was found using SVD transform.Comment: 7 pages, 3 figures; Presented at Symposium on applied nuclear physics
and innovative technologies, Cracow, 03-06 June 201
Hydrologic and Water Quality Monitoring on Turkey Creek Watershed, Francis Marion National Forest, SC
2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio
- …