7,711 research outputs found

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Field-induced paramagnons at the metamagnetic transition in Ca1.8Sr0.2RuO4

    Get PDF
    The magnetic excitations in Ca1.8Sr0.2RuO4 were studied across the metamagnetic transition and as a function of temperature using inelastic neutron scattering. At low temperature and low magnetic field the magnetic response is dominated by a complex superposition of incommensurate antiferromagnetic fluctuations. Upon increasing the magnetic field across the metamagnetic ransition, paramagnon and finally well-defined magnon scattering is induced, partially suppressing the incommensurate signals. The high-field phase in Ca1.8Sr0.2RuO4 has, therefore, to be considered as an intrinsically ferromagnetic state stabilized by the magnetic field

    Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu2_2(BO3_3)2_2

    Get PDF
    The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu2_2(BO3_3)2_2 is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long-lived if no thermally populated triplons are near-by but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry--Sutherland lattice.Comment: 5 pages, 4 figure

    Quark matter in compact stars?

    Full text link
    Ozel, in a recent reanalysis of EXO 0748-676 observational data (astro-ph/0605106), concluded that quark matter probably does not exist in the center of compact stars. We show that the data is actually consistent with the presence of quark matter in compact stars.Comment: 4 pages, LaTeX; New title and overall rewrite to reflect version published in Nature. Conclusions unchange

    Automated simulation of areal bone mineral density assessment in the distal radius from high-resolution peripheral quantitative computed tomography

    Get PDF
    SummaryAn automated image processing method is presented for simulating areal bone mineral density measures using high-resolution peripheral quantitative computed tomography (HR-pQCT) in the ultra-distal radius. The accuracy of the method is validated against clinical dual X-ray absorptiometry (DXA). This technique represents a useful reference to gauge the utility of novel 3D quantification methods applied to HR-pQCT in multi-center clinical studies and potentially negates the need for separate forearm DXA measurements.IntroductionOsteoporotic status is primarily assessed by measuring areal bone mineral density (aBMD) using 2D dual X-ray absorptiometry (DXA). However, this technique does not sufficiently explain bone strength and fracture risk. High-resolution peripheral quantitative computed tomography (HR-pQCT) has been introduced as a method to quantify 3D bone microstructure and biomechanics. In this study, an automated method is proposed to simulate aBMD measures from HR-pQCT distal radius images.MethodsA total of 117 subject scans were retrospectively analyzed from two clinical bone quality studies. The distal radius was imaged by HR-pQCT and DXA on one of two devices (Hologic or Lunar). Areal BMD was calculated by simulation from HR-pQCT images (aBMD(sim)) and by standard DXA analysis (aBMD(dxa)).ResultsThe reproducibility of the simulation technique was 1.1% (root mean-squared coefficient of variation). HR-pQCT-based aBMD(sim) correlated strongly to aBMD(dxa) (Hologic: R (2) = 0.82, Lunar: R (2) = 0.87), though aBMD(sim) underestimated aBMD(dxa) for both DXA devices (p < 0.0001). Finally, aBMD(sim) predicted aBMD at the proximal femur and lumbar spine with equal power compared to aBMD(dxa).ConclusionThe results demonstrate that aBMD can be simulated from HR-pQCT images of the distal radius. This approach has the potential to serve as a surrogate forearm aBMD measure for clinical HR-pQCT studies when axial bone mineral density values are not required

    Helimagnon Bands as Universal Spin Excitations of Chiral Magnets

    Full text link
    MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limit, respectively. We report a comprehensive inelastic neutron scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over twenty different locations in reciprocal space. Using a model based on only three parameters, namely the measured pitch of the helix, the measured ferromagnetic spin wave stiffness and the amplitude of the signal, as the only free variable, we can simultaneously account for \textit{all} of the measured spectra in excellent quantitative agreement with experiment. Our study identifies the formation of intense, strongly coupled bands of helimagnons as a universal characteristic of systems with weak chiral interactions.Comment: 8 pages, 4 figures, references updated, introduction updated, reformatte
    • …
    corecore