328 research outputs found

    The influence of English colonization on culture of Australians

    Get PDF

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ 1-Π°Π»ΠΊΡ–Π»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρ–Π²

    Get PDF
    An effective approach for synthesis of 5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione by 1,1’-carbonyldiimidazole promoted interaction of 5-methyl-2,4-dioxo-3-phenyl-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidine-6-carboxylic acid with benzohydrazide has been developed. The procedure also includes cyclization of N’-benzoyl-5-methyl-2,4-dioxo-3-phenyl-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidine-6-carbohydrazide obtained by boiling in phosphorous oxychloride and further hydrolysis of the chlorine atom at position 2 of the thieno[2,3-d]pyrimidine system. Alkylation of the assembly of two heterocyclic units obtained with benzyl chlorides, chloroacetamides, and 5-(chloromethyl)-3-aryl-1,2,4-oxadiazoles has allowed obtaining of 1-alkyl-5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones. The structures of the compounds obtained have been confirmed by the 1H NMR, chromato-mass spectral and elemental microanalysis data. The results of the screening performed by the agar diffusion method (β€œwell method”) have shown the absence of the antimicrobial activity for 1-benzyl-5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones and 2-[5-methyl-2,4-dioxo-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl]-N-arylacetamides; but the activity for 1-{[3-aryl-1,2,4-oxadiazol-5-yl]methyl}-5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones has been found. The compounds of this range appeared to be active against the strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis; the diameters of their growth inhibition zones were similar to those for the reference drugs Metronidazole and Streptomycin.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ эффСктивный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ синтСзу 5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½Π° ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ 1,1’-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»Π΄ΠΈΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠΌ взаимодСйствия 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-диоксо-3-Ρ„Π΅Π½ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты с Π±Π΅Π½Π·ΠΎΠ³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ΄ΠΎΠΌ. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Ρ†ΠΈΠΊΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ N’-Π±Π΅Π½Π·ΠΎΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-диоксо-3-Ρ„Π΅Π½ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ΄Π° кипячСниСм Π² хлорокиси фосфора ΠΈ дальнСйший Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ· Π°Ρ‚ΠΎΠΌΠ° Ρ…Π»ΠΎΡ€Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2 Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ систСмы. АлкилированиС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΡƒΡ…Π·Π²Π΅Π½Π½ΠΎΠ³ΠΎ ансамбля Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»ΠΎΠ² Π±Π΅Π½Π·ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π°ΠΌΠΈ, Ρ…Π»ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄Π°ΠΌΠΈ ΠΈ 5-(Ρ…Π»ΠΎΡ€ΠΌΠ΅Ρ‚ΠΈΠ»)-3-Π°Ρ€ΠΈΠ»-1,2,4-оксадиазолами ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ 1-Π°Π»ΠΊΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½Ρ‹. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ… 1Н ЯМР, хроматомас спСктров ΠΈ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π°. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ скрининга ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€ (Β«ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠ»ΠΎΠ΄Ρ†Π΅Π²Β») установлСно отсутствиС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности Ρƒ 1-Π±Π΅Π½Π·ΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΈ 2-[5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-диоксо-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)-3,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-1(2H)-ΠΈΠ»]-N-Π°Ρ€ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности для 1-{[3-Π°Ρ€ΠΈΠ»-1,2,4-оксадиазол-5-ΠΈΠ»]ΠΌΠ΅Ρ‚ΠΈΠ»}-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½ΠΎΠ². Π”Π°Π½Π½Ρ‹Π΅ вСщСства проявили ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ ΠΊ ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus, Escherichia coli ΠΈ Baсillus subtilis со значСниями Π·ΠΎΠ½ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ роста, Π±Π»ΠΈΠ·ΠΊΠΈΠΌΠΈ ΠΊ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ сравнСния ΠΌΠ΅Ρ‚Ρ€ΠΎΠ½ΠΈΠ΄Π°Π·ΠΎΠ»Ρƒ ΠΈ стрСптомицину.Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ синтСзу 5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρƒ ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΠ²Π°Π½ΠΎΡ— 1,1’-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Π»Π΄Ρ–Ρ–ΠΌΡ–Π΄Π°Π·ΠΎΠ»ΠΎΠΌ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-діоксо-3-Ρ„Π΅Π½Ρ–Π»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Π· Π±Π΅Π½Π·ΠΎΠ³Ρ–Π΄Ρ€Π°Π·ΠΈΠ΄ΠΎΠΌ. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Ρ‚Π°ΠΊΠΎΠΆ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” наступну Ρ†ΠΈΠΊΠ»Ρ–Π·Π°Ρ†Ρ–ΡŽ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ N’-Π±Π΅Π½Π·ΠΎΡ—Π»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-діоксо-3-Ρ„Π΅Π½Ρ–Π»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°-Π³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ³Ρ–Π΄Ρ€Π°Π·ΠΈΠ΄Ρƒ кип’ятінням Ρƒ хлорокисі фосфору Ρ‚Π° подальший Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Β Π°Ρ‚ΠΎΠΌΠ° Ρ…Π»ΠΎΡ€Ρƒ Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 2 Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½ΠΎΠ²ΠΎΡ— систСми. ΠΠ»ΠΊΡ–Π»ΡŽΠ²Π°Π½Π½Ρ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ Π΄Π²ΠΎΠ»Π°Π½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ансамблю Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Π² Π±Π΅Π½Π·ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π°ΠΌΠΈ, Ρ…Π»ΠΎΡ€ΠΎΠ°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Π°ΠΌΠΈ Ρ‚Π° 5-(Ρ…Π»ΠΎΡ€ΠΎΠΌΠ΅Ρ‚ΠΈΠ»)-3-Π°Ρ€ΠΈΠ»-1,2,4-оксадіазо-Π»Π°ΠΌΠΈ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ 1-Π°Π»ΠΊΡ–Π»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–-Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½ΠΈ. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук Π±ΡƒΠ»ΠΈ ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½Ρ– Π½Π° основі Π΄Π°Π½ΠΈΡ… 1Н ЯМР, хроматомас спСктрів Ρ‚Π° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ. Π—Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ скринінгу ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€ (Β«ΠΌΠ΅Ρ‚ΠΎΠ΄ колодязів») встановлСно Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності Ρƒ 1-Π±Π΅Π½Π·ΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρ–Π² Ρ‚Π° 2-[5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-діоксо-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)-3,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-1(2H)-Ρ–Π»]-N-Π°Ρ€ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності для 1-{[3-Π°Ρ€ΠΈΠ»-1,2,4-оксадіазол-5-Ρ–Π»]ΠΌΠ΅Ρ‚ΠΈΠ»}-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-окса-Π΄Ρ–Π°Π·ΠΎΠ»-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρ–Π². Π”Π°Π½Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ виявили Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ ΡˆΡ‚Π°ΠΌΡ–Π² Staphylococcus aureus, Escherichia coli Ρ‚Π° Baсillus subtilis Ρ–Π· значСннями Π·ΠΎΠ½ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ росту, близькими Π΄ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² порівняння ΠΌΠ΅Ρ‚Ρ€ΠΎΠ½Ρ–Π΄Π°Π·ΠΎΠ»Ρƒ Ρ‚Π° стрСптоміцину

    Pair decay width of the Hoyle state and carbon production in stars

    Full text link
    Electron scattering off the first excited 0+ state in 12C (the Hoyle state) has been performed at low momentum transfers at the S-DALINAC. The new data together with a novel model-independent analysis of the world data set covering a wide momentum transfer range result in a highly improved transition charge density from which a pair decay width Gamma_pi = (62.3 +- 2.0) micro-eV of the Hoyle state was extracted reducing the uncertainty of the literature values by more than a factor of three. A precise knowledge of Gamma_pi is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    How quantum bound states bounce and the structure it reveals

    Get PDF
    We investigate how quantum bound states bounce from a hard surface. Our analysis has applications to ab initio calculations of nuclear structure and elastic deformation, energy levels of excitons in semiconductor quantum dots and wells, and cold atomic few-body systems on optical lattices with sharp boundaries. We develop the general theory of elastic reflection for a composite body from a hard wall. On the numerical side we present ab initio calculations for the compression of alpha particles and universal results for two-body states. On the analytical side we derive a universal effective potential that gives the reflection scattering length for shallow two-body states.Comment: final publication version, new lattice results on alpha particle compression, 5 pages, 2 figure

    Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures the radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km\textsuperscript{2}. In the present work we discuss the improvements of the signal reconstruction applied for the Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performance of matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised trace, i.e. removes all signal-unrelated amplitudes. We present the comparison between standard method of signal reconstruction, matched filtering and autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection.Comment: ARENA2018 proceeding

    Current Status and New Challenges of The Tunka Radio Extension

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array spread over an area of about 1~km2^2. The array is placed at the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) and detects the radio emission of air showers in the band of 30 to 80~MHz. During the last years it was shown that a sparse array such as Tunka-Rex is capable of reconstructing the parameters of the primary particle as accurate as the modern instruments. Based on these results we continue developing our data analysis. Our next goal is the reconstruction of cosmic-ray energy spectrum observed only by a radio instrument. Taking a step towards it, we develop a model of aperture of our instrument and test it against hybrid TAIGA observations and Monte-Carlo simulations. In the present work we give an overview of the current status and results for the last five years of operation of Tunka-Rex and discuss prospects of the cosmic-ray energy estimation with sparse radio arrays.Comment: Proceedings of E+CRS 201

    Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 200 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore
    • …
    corecore