79 research outputs found

    Shorewards Upslope of the Layer of Minimum Oxygen Off Bombay: Its Influence on Marine Biology, Especially Fisheries

    Get PDF
    Shorewards Upslope of the Layer of Minimum Oxygen Off Bombay: Its Influence on Marine Biology, Especially Fisherie

    Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes

    Get PDF
    Trophodynamics of meso-zooplankton in the North Sea (NS) were assessed at a site in the southern NS, and at a shallow and a deep site in the central NS. Offshore and neritic species from different ecological niches, including Calanus spp., Temora spp. and Sagitta spp., were collected during seven cruises over 14 months from 2007 to 2008. Bulk stable isotope (SI) analysis, phospholipid-derived fatty acid (PLFA) compositions, and δ 13CPLFA data of meso-zooplankton and particulate organic matter (POM) were used to describe changes in zooplankton relative trophic positions (RTPs) and trophodynamics. The aim of the study was to test the hypothesis that the RTPs of zooplankton in the North Sea vary spatially and seasonally, in response to hydrographic variability, with the microbial food web playing an important role at times. Zooplankton RTPs tended to be higher during winter and lower during the phytoplankton bloom in spring. RTPs were highest for predators such as Sagitta sp. and Calanus helgolandicus and lowest for small copepods such as Pseudocalanus elongatus and zoea larvae (Brachyura). δ 15NPOM-based RTPs were only moderate surrogates for animals’ ecological niches, because of the plasticity in source materials from the herbivorous and the microbial loop food web. Common (16:0) and essential (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA) structural lipids showed relatively constant abundances. This could be explained by incorporation of PLFAs with δ 13C signatures which followed seasonal changes in bulk δ 13CPOM and PLFA δ 13CPOM signatures. This study highlighted the complementarity of three biogeochemical approaches for trophodynamic studies and substantiated conceptual views of size-based food web analysis, in which small individuals of large species may be functionally equivalent to large individuals of small species. Seasonal and spatial variability was also important in altering the relative importance of the herbivorous and microbial food webs

    The energy budget of the Sable Island ocean region

    No full text

    High Frequency Ambient Sound in the Arctic

    No full text

    Not Available

    No full text
    Not AvailableShorewards Upslope of the Layer of Minimum Oxygen Off Bombay: Its Influence on Marine Biology, Especially FisheriesNot Availabl

    Global hotspots of coherent marine fishery catches

    No full text
    Although different fisheries can be tightly linked to each other by human and ecosystem processes, they are often managed independently. Synchronous fluctuations among fish populations or fishery catches can destabilize ecosystems and economies, respectively, but the degree of synchrony around the world remains unclear. We analyzed 1,092 marine fisheries catch time series over 60 yr to test for the presence of coherence, a form of synchrony that allows for phase-lagged relationships. We found that nearly every fishery was coherent with at least one other fishery catch time series globally and that coherence was strongest in the northeast Atlantic, western central Pacific, and eastern Indian Ocean. Analysis of fish biomass and fishing mortality time series from these hotspots revealed that coherence in biomass or fishing mortality were both possible, though biomass coherence was more common. Most of these relationships were synchronous with no time lags, and across catches in all regions, synchrony was a better predictor of regional catch portfolio effects than catch diversity. Regions with higher synchrony had lower stability in aggregate fishery catches, which can have negative consequences for food security and economic wealth
    corecore