54,753 research outputs found

    Life assessment of combustor liner using unified constitutive models

    Get PDF
    Hot section components of gas turbine engines are subject to severe thermomechanical loads during each mission cycle. Inelastic deformation can be induced in localized regions leading to eventual fatigue cracking. Assessment of durability requires reasonably accurate calculation of the structural response at the critical location for crack initiation. In recent years nonlinear finite element computer codes have become available for calculating inelastic structural response under cyclic loading. NASA-Lewis sponsored the development of unified constitutive material models and their implementation in nonlinear finite element computer codes for the structural analysis of hot section components. These unified models were evaluated with regard to their effect on the life prediction of a hot section component. The component considered was a gas turbine engine combustor liner. A typical engine mission cycle was used for the thermal and structural analyses. The analyses were performed on a CRAY computer using the MARC finite element code. The results were compared with laboratory test results, in terms of crack initiation lives

    Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    Get PDF
    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data

    UBV photometry of asteroid 433 Eros

    Get PDF
    UBV observations of asteroid 433 Eros were conducted on 17 nights during the winter of 1974/75. The peak-to-peak amplitude of the light curve varied from about 0.3 mag to nearly 1.4 mag. The absolute V magnitude, extrapolated to zero phase, is 10.85. Phase coefficients of 0.0245 mag/degree, 0.0009 mag/degree, and 0.0004 mag/degree were derived for V, B-V, and U-B, respectively. The zero-phase color of Eros (B-V = 0.88, U-B = 0.50) is representative of an S (silicaceous) compositional type asteroid. The color does not vary with rotation. The photometric behavior of Eros can be modeled by a cylinder with rounded ends having an axial ratio of about 2.3:1

    Mars: Seasonally variable radar reflectivity

    Get PDF
    Since reflectivity is a quantity characteristic of a given target at a particular geometry, the same (temporally unchanging) target examined by radar on different occasions should have the same reflectivity. Zisk and Mouginis-Mark noted that the average reflectivities in the Goldstone Mars data increased as the planet's S hemisphere passed from the late spring into early summer. The same data set was re-examined and the presence of the phenomenon of the apparent seasonal variability of radar reflectivity was confirmed. Two objections to these findings are addressed: (1) reflectivity variations may be present in the Goldstone Mars data as a result of an instrument/calibration error; and (2) the variations were introduced into the analysis through comparing reflectivities from two incompatible subsets of the data

    On numerical integration and computer implementation of viscoplastic models

    Get PDF
    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method

    Millipeds (Arthropoda: Diplopoda) of the Ark - La - Tex. VI. New Geographic Distributional Records from Select Counties of Arkansas

    Get PDF
    We continue to report, in the sixth of a series of papers, new geographic records for millipeds of the state, including noteworthy records for some taxa collected from Crowley’s Ridge in eastern Arkansas. This contribution documents 47 new co. records and includes records for 19 species within 9 families and 5 orders. More uncommon millipeds found included Okliulus carpenteri (Parajulidae), Eurymerodesmus newtonus (Eurymerodesmidae), Pseudopolydesmus minor (Polydesmidae) and undescribed species of Ethojulus (Parajulidae) and Nannaria (Xystodesmidae). Undoubtedly, additional records will be reported in the future as several gaps in the distribution of Arkansas millipeds remain

    Magnetar Spindown, Hyper-Energetic Supernovae, and Gamma Ray Bursts

    Full text link
    The Kelvin-Helmholtz cooling epoch, lasting tens of seconds after the birth of a neutron star in a successful core-collapse supernova, is accompanied by a neutrino-driven wind. For magnetar-strength (∼1015\sim10^{15} G) large scale surface magnetic fields, this outflow is magnetically-dominated during the entire cooling epoch.Because the strong magnetic field forces the wind to co-rotate with the protoneutron star,this outflow can significantly effect the neutron star's early angular momentum evolution, as in analogous models of stellar winds (e.g. Weber & Davis 1967). If the rotational energy is large in comparison with the supernova energy and the spindown timescale is short with respect to the time required for the supernova shockwave to traverse the stellar progenitor, the energy extracted may modify the supernova shock dynamics significantly. This effect is capable of producing hyper-energetic supernovae and, in some cases, provides conditions favorable for gamma ray bursts. We estimate spindown timescales for magnetized, rotating protoneutron stars and construct steady-state models of neutrino-magnetocentrifugally driven winds. We find that if magnetars are born rapidly rotating, with initial spin periods (PP) of ∼1\sim1 millisecond, that of order 1051−105210^{51}-10^{52} erg of rotational energy can be extracted in ∼10\sim10 seconds. If magnetars are born slowly rotating (P≳10P\gtrsim10 ms) they can spin down to periods of ∼1\sim1 second on the Kelvin-Helmholtz timescale.Comment: 16 pages, 5 figures, emulateap
    • …
    corecore