General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

R. L. Millis, E. Bowell, and D. T. Thompson

Planetary Research Center
Lowell Observatory Flagstaff, Arizona 86001

Four copies of manus cript submitted.
Manuscript totals 43 pages, including four Tables and eleven Figures.

RUNNING HEAD: UBV PHOTOMETRY OF ERGS

Send proofs to:	Dr. Robert L. Millis
	Lowell Observatory
	Post Office Box 1269
	Flagstaff, Arizona 86001

ABSTRACT

UBV observations of asteroid 433 Eros were conducted on 17 nights during the winter of $1974 / 75$. The peak-to-peak amplitude of the light curve varied from about 0.3 mag to nearly 1.4 mag. The absolute V magnitude, extrapolated to zero phase, is 10.85 . Phase coefficients oi' $0.0245 \mathrm{mag} /$ degree, $0.0009 \mathrm{mag} /$ degree, and $0.0004 \mathrm{mag} /$ degree were derived for $V, B-V$, and $U-B$, respectively. The zero-phase color of Eros ($B-V=0.88, U-B=0.50$) is representative of an S (silicaceous) compositional type asteroid. The color does not vary with rotation. The photometric behavior of Eros can be modeled by a cylinder with rounded ends having an axial ratio of about $2 \cdot 3: 1$. The asteroid is rotating about a short axis with the north pole at $\lambda_{0}=15^{\circ} \quad \beta_{0}=9^{\circ}$.

I. OBSERVATIONS

UBV observations of Eros were conducted on 17 nights during the winter of $1974 / 75$. On most nights the coverage spanned one complete rosation of the asteroid. All measurements were made using a conventional single-channel photometer equipped with standard UBV filters on the 42 -inch ($107-\mathrm{cm}$) telescope at Lowell Observatory's Anderson 'Mesa site. A dc recording system which produces both an analog record (strip chart) and a digital output via a teletype printer was employed. The photomultiplier was an EMI 6256 S cooled to $-15^{\circ} \mathrm{C}$.

Geocentric positions of Eros are given in Table I for each night of observation. This ephemeris was calculated using a method developed at Lowell Observatory for use in a survey program of asteroid photometry and is referred to as the method of "quasi-osculating elements." These are the elements which lead to a geocentric ephemeris in best agreement with pesitions given by a rigorous numerical integration that includes planetary perturbations. The quasi-osculating elements therefore differ from the true osculating elements in two important respects: they are applicable over an extended interval of time rather than at an "instantaneous" epoch only, and they contain implicitly the effects of planetary perturbations and light time.

The quasi-osculating elements for Eros were derived from the positions published in Ephemerides of Minor Planets for 1974 , Leningrad 1973, and are as follows:

$$
\begin{array}{lll}
\text { M } 356^{\circ} .2581 & \text { e } 0.222484 \\
\omega & 178^{\circ} .4367 & \text { n } 2016.76 \text { arcsec } / \mathrm{day} \\
\Omega & 303^{\circ} .8233 & \text { a } 1.45736 \mathrm{~A} . \mathrm{U} . \\
\text { i } 10^{\circ} .8230 & &
\end{array}
$$

The four spherical elements are referred to the mean ecliptic and equinox of 1950.0 . The accuracy of the ephemeris over the interval August 1974 through July 1975 is probably better than 30 arcsec in α and δ, and 0.001 A.U. in r and Δ.

Each night, observations of Eros were interspersed with observations of one or two comparison stars. An effort was made to select stars which were near the asteroid's path on the sky and which were similar to Eros in brightness and color. However, it was not always possible to satisfy all three criteria simultaneously. The UBV magnitudes and color indices of the comparison stars as determined from observations on subsequent nights are given in the last three columns of Table II. These values are based on from one to four nights' observations as indicated in column six. The uncertainty in the magnitudes and color indices as judged from the agreement of results from different nights is estimated to be on the order of 0.01 mag. Column one contains the dates ${ }^{1}$ on which the objects were used as comparison stars, while column two gives the catalogue numbers of those stars bright enough to be included in the Bonner Durchmusterung or Schonfeld's Southern Durchmusterung. The stars' coordinates are listed ${ }^{1}$ U.T. dates and times are used throughout this paper.
in columns four and five.
Typically a single measurement of the asteroid or a comparison star consisted of three ten-sceond integrations on the object anc one ten-second integration on the sky through each of the three filters. The observations of Eros were reduced relative to those of the comparison stars using mean values for the extinction and +ran formation coefficients.

II. VARIATION IN BRIGHTNESS

The observed V magnitudes of Eros corrected to unit distance from the Sun and Earth are listed along with the Universal Times of the measurements (uncorrected for light time) in Table III. These dats are plotted as crosses in Figures 1, 2, 3, and 4. The solid curves, which are shown for visual clarity, were drawn freehand through the same points shifted to the left and right by amounts equal to Fros' mean synodic period. The light curves in Figures 1, 2, 3, and 4 have been aligned so that the times of primary maxima (as defined below) coincide with the midpoint of the abscissa.

Maxima and Minima in the Light Curve
Table IV lists epochs of light-curve maxima and minima together with their absolute V magnitudes. Like most asteroids, the light curve of Eros passes through two maxima and two minima during each rotation. We define primary maximum as the brighter of the two maxima on the light curve of 18 October 1974, and primery minimum as the fainter of
the two minima on that date. Further, in order to identify subsequent primary maxima without confusion, we suppose that they succeed each other after an interval corresponding to one synodic axial rotation of Eros. Primary minima, secondary maxima, and secondary minima are identified in a similar way. From this convention it follows that maxima and minima succeed each other cyclically in a fixed order, namely: primary maximum, primary minimum, secondary maximum, secondary minimum. In this way maxima and minima may always be related to a given rotational phase of Eros even though, as examination of Figures $1,2,3$, ard 4 end Table IV shows, primary maximum is not always the brighter of the two maxima or primary minimum the fainter of the two minima.

Times of maxima and minima were calculated from the chart record of the photoelectric signal. This analog record is at a conveniently large scale, 2 minutes per inch in time and 10 inches full-scale deflection, so that the timing of events may easily be made to $\pm 2^{5}$. Timing marks were established by identifying events on the chart with the clock time recorded on the teletype-writer output and are accurate to $\pm 1^{\mathbf{S}}$. Hand-drawn curves were used to determine times of maximum and ©inimum light for each of the three filters, and this method was p:eferred to analytical curve fitting because decisions regarding padr data could be more easily made. The epochs listed in Table IV have been corrected for light time: J.D. (c) = J.D. observed-1ight tize. The error ε is estimated from the scatter in the epoch
determinations for the three filters, the curvature and regularity of the light curve, and the number of integrations used to define it; ε should be comparable to the standard deviation. The V magnitudes at maximum and minimum light should contain no significant errors de to interpolation.

From the epochs listed in Table IV it is clear that the intervals between successive maxima and minima varied considerably and in a complex manner as the apparition progressed. For example, the interval between primary maximum and primary minimum increased from $1^{\mathrm{h}} 19^{\mathrm{m}}$ (0.250 synodic periods) on 18 setober 1974 to $1^{\mathrm{h}} 35^{\mathrm{m}}(0.301$) on 4 January 1975, decreased to a minimum of about $1^{\mathrm{h}} 20^{\mathrm{m}}(0.25)$ near 12 February, and increased again to $1^{\mathrm{h}} 25^{\mathrm{m}}(0.268)$ on 19 March. The intervals between the other maxima and minima likewise varied in a complex manner. A possible explanation for these variations is given in section IV.

Absolute Magnitude and Phase Coefficient

Veverka (1971) has discussed the pitfalls which are attendant to the determination and interpretation of asteroid phase curves. It appears to us that a meaningful phase coefficient can be derived for Eros and other asteroids with large rotational brightness variation if their shapes can be approximated by a two-axis surface of revolution such as a prolate spheroid or a cylinder. Sush an asteroid, rotating about a short axis, will always present the same figure and total projected area (illuminated and in shadnw) near times of maximum light,
regardless of aspect. In this case, changes in the brightness of the maxima corrected to unit distance can be attributed to phase eifects.

In Figure 5 we have plotted the observed brightness of Eros at primary and secondary maxima, corrected to unit distance from the Sun and Earth, against solar phase angle. The straight lines, whose equations are given below, were fitted to the data by least squares.

$$
\begin{array}{rlrl}
\mathrm{V}(1, \alpha)= & 10.85+0.0237|\alpha| & \text { (primary maximum) } \\
& \pm .02 \pm .0006 \\
\mathrm{~V}(1, \alpha)= & 10.79+0.0255|\alpha| \quad \text { (secondary maximum) } \\
& \pm .02 \pm .0006 &
\end{array}
$$

Extrapolation to zero phase of the brightness data for the secondary maximum may be unreliable in view of the apparent curvature. For the absolute magnitude of Eros at photometric maximum, extrapolated to zero phase, we therefore adopt $\mathrm{V}_{0}(1,0)=10.85$. The mean phase coefficient at the V wavelength is $B_{V}=0.0245 \mathrm{mag} \mathrm{deg}^{-1}$. Eros is considerably brighter than most previously published results suggest. Taylor (1971) gives $V_{0}(1,0)=11.54$.

If Eros were not symmetrical about its long axis, then its projected area at maximum light--and therefore brightness--would vary with aspect. The variation in brightness due to aspect alone would be symmetrical about an aspect of 90° (equator-on), while the variation in brightness due to solar phase angle would be symmetrical about opposition. We will show later in this paper that the aspect of Eros was 90° on about December 29, 1974, at which time the solar phase angle
was 30°, while opposition occurred much later on January 21, 1975. Hence, if there were any substantial variation with aspect in the projected area of Eros at m. .imum light, the data in Figure 5 could not possibly be fitted by giralght lines. Since the data--particularly for the primary maxima--are well fitted by straight lines, we conclude that Eros' figure can be closely approximated by a two-axis surface of revolution. We further conclude that the phese coefficient which we derived is indeed a measure of the roughness of Eros' surface. Amplitude of the Light Curve

Figure 6 shows the peak-to-peak amplitude in the light curve plotted against Julian date. The data were calculated from the V magnitudes in Table IV. We define two measures of amplitude: magnitude at primary minimum minus magnitude at primary maximum, and magnitude at secondary minimum minus magnitude at primary minimum. We refer to these as primary and secondary amplitudes, respectively. A maximum amplitude of about 1.4 near J.D. 24,42410 (29 December 1974) is indicated.

Position of the Pole of Rotation

Many methods have been used to determine the orientation of the rotation axis of Eros, and most of these have been described by Vesely (1971). We present here a new method based on the dependence of the light-curve $a m_{2}$ ilitude on the aspect angle ψ (the angle setween the rotation axis and the line of sight).

We: assume: (1) that the maximum amplitude in the light curve
occurs when the sub-Earth point is on the rotational equator of Eros (i.e., $\psi=90^{\circ}$), (2) that Eros is bisymmetrical about its equator, (3) that there is no large-scale variegation of surface texture or albedo, and (4) that changes in the phese angle or the asterocentric declinations of the Sun and the Earth affect the marnitudes at maximum and minimum equally, and therefore to not affect the amplitude. Clearly it is unlikely that these conditions are precisely met, and so the derived position of the pole may be only approximate.

It follows from our model that the light-curve amplitude depends only on the asterocentric declination of the Earth $\mathrm{d}_{\mathrm{E}}\left(=90^{\circ}-\psi\right)$ and that a given amplitude occlrs twice during the apparition, when the aspect is $90^{\circ} \pm \mathrm{d}_{\mathrm{E}}$. Hence, if $\left(\alpha_{1}, \delta_{1}\right),\left(\alpha_{2}, \delta_{2}\right)$ are the right ascensions and declinations of Eros at aspects $90^{\circ}-\mathrm{d}_{\mathrm{E}}$ and $90^{\circ}+\mathrm{d}_{\mathrm{E}}$ respectively, and if $\left(\alpha_{0}, \delta_{0}\right)$ is the right ascension and declination of the (northern hemisphere) pole of rotation of Eros, then

$$
\tan \delta_{0}=\frac{-\cos \delta_{1} \cos \left(\alpha_{1}-\alpha_{0}\right)-\cos \delta_{2} \cos \left(\alpha_{2}-\alpha_{0}\right)}{\sin \delta_{1}+\sin \delta_{2}}
$$

This equation is to be solved for α_{0}, δ_{0} by optimization techniques. Separate solutions were at tempted for primary and secondary amplitudes, and we assumed that $\psi>90^{\circ}\left(\mathrm{d}_{E}<0^{\circ}\right)$ for dates prior to J.D. 2442410. Five amplitudes were selected ($0.4,0.6,0.8,1.0$, and 1.2 magnitudes), and pairs of dates were computed from Figure 6 using linear interpolation. The corresponding geocentric coordinates $\left(\alpha_{1}, \delta_{1}\right),\left(\alpha_{2}, \delta_{2}\right)$ were
used in the equation above. Trial values of α_{0} for each pair of geocentric positions then led to values for δ_{0}. We suppose that if α_{0} is correctly chosen, then the computed $\delta \circ$ will not vary with amplitude, in which case a plot of δ o versus amplitude should result in a functional relationship with a gradient or correlation coefficient of zero. In practice it was found that fairly highly correlated linear relationships exist between δ_{0} and amplitude for all α_{0} and that a determinate solution for (ω_{0}, δ_{o}) exists.

The solutions are: $\alpha_{0}=0^{h} 42^{m} .8, \delta_{0}=+14^{\circ} .9$ from the primary amplitudes, and $\alpha_{0}=1^{\mathrm{h}} 10^{\mathrm{m}} .6, \delta_{0}=+10^{\circ} .3$ from the secondary amplitudes (1950.0 coordinates are used). The difference between the two pole determinations is manifest in Figure 6 as a time displacement between the two curves: in general the primary amplitude is first to attain a given amplitude. The solution for the position of the pole derived from the secondary amplitudes is ill-conditioned because these vary with time in a somewhat irregular way after J.D. 2442410 . We therefore reject the solution from the secondary amplitudes and adopt:

$$
\begin{array}{ll}
\alpha_{0}=0^{h} 42^{m} \cdot 8 \pm 4 \cdot m_{0} & \delta_{0}=+14 \cdot 9 \pm 3 \cdot 4 \\
\lambda_{0}=15^{0} \cdot 4 \pm 2 \cdot 2 & \beta_{0}=+9^{\circ} \cdot 3 \pm 3 \cdot 8 \tag{1950.0}
\end{array}
$$

The probable errors are estimated from the r.m.s. scatter about the least-squares line in the δ_{0}, amplitude plane.

III. UBV COLOR INDICES

In order to derive accurate color indices, it was necessary to correct for the substantial change in Eros' brightness which occurred during the time required to obtain a complete three-color set of measurements. The correction was made in the present work by fitting parabolas through each group of three successive observations in a given filter and interpolstiag the observed V and U intensities to the time of the B -filter measurement.

Rotational Color Variation

No evidence of rotational color variation was found on any of the 16 nights ${ }^{1}$ that multi-filter measurements were made. Figures 7 and 8 illustrate the absence of rotational variation in the color indices of Eros on two nights separated by about seven weeks. The standard deviat1. the color-index measurements on these two nights is between 0.005 mag and 0.007 mag. Certainly any variation in $B-V$ or $U-B$ had a peak-to-peak amplitude less than our detection threshold of 0.01 mag. UBV Colors and Reddening with Phase

Reddening of certain asteroids with increasing solar phase angle has been reported in the literature (see, e.g., Gehrels, 1970). In Figures y and 10 the nightly mean color indices of Eros from the present observations (filled circles) are plotted against solar phase angle. The solid lines were fitted to these points by least squares and are described by the following expressions:

[^0]```
B-V (\alpha)}=0.884+0.00091 |a
 \pm.005 \pm.0002
U-B (\alpha)=0.503+0.00043 |\alpha|
 \pm.011 \pm.0004
Reddening with phase is clearly sean in the B-V meamurements and mav
be present in U-B.
 The bomred circles in Figures ? and }20\mathrm{ indlagte ofservations by
E. F. Tedesco (1975) in Les Cruces, while the circled crossos denote
measurements by J. L. Dunlag (1975) and W. Wisriewski (1975) in Tucson.
Tedesco's data are in good agrecmont with the Lowell observations. The
B-V measurements by Dunlag and WisniewstiL are also in reasonable agree.
ment with the present data, although the scatter is somewhat larger.
The U-B measurements by the Tucson observors appear to be systematically
redd n by about. . }04\mathrm{ mag than le results obtained in Flagstaff and
Laq Cruces. This difference notwithstanding, it is quite clear that
Eros' color indices are representative of an S (silicaceous) composi-
tional type asteroid (Zellner et al., 1975).
```

IV. THE SHAPE OF EROS

We have shown that the color of Eros does not vary with rotation, and this suggests that Eros is not mineralogically variegated on a large scale. Zellner and Gradie (1975) have shown that the polarization of Eros is constant during a rotation and have argued that both the albedo and microscale surface roughness are uniform to at least one
part in 40 . Hence, it may be concluled thes the observel beightness veriation is due to share.

Because the maximum amplitude of the light curve is quite large, Eros must be an elongated body rotatine about a short axis. We have already argued that the variation with phase angle of the absolute magnitude of Eros at maximum light implies a figure which is more or less symotricel ebout its lone axis. Clearly, a traaxie? ellipsold having the dimensions derived by Roach and Stotdard (1938) is ruted out, because the projected area of such an object seen side-on wound vary ereatly with espect.

In Flgure 11 we have plotted the light-curve amplitude of Eros as a function of aspect. As in Figure 6, we distinguish between primary and secondary anplituades. Eros' aspect angle was computed assuming the pole derived above. We consider the aspect angle so calculated to be accurate to within about $3^{\circ}$, which is quite adequate for the purposes of the following discussion.

Computed amplitude-aspect curves for three candidate biaxial figures are also shown in Figure 1l. The figures are a prolate spheroid (PS), a cylinder with hemispherical ends (HC), and a right cylinder (RC). These curves were computed on the assumption that the amplitude of such a body seen at any particular aspect angle is given simply by the ratio of the maximum to minimum projected areas, expressed in stellar magnitudes. This assumption is not completely valid because, as Veverka (1971) has pointed out, the phase coefficient of a non-spherical ORIGINAT, PAGE is OF PONR QUALITY
body will be different when the object is seen end-on then when seen side-on. Hence there will be some degandence of ergliture on solser phase angle. However, we expect that such depondence is not very great.

The three computed curves were normelized to a meximum amplitude of 1.2 mag by choosing axial retios of $3.00: 1,2.54: 1$, and $2.35: 1$ for the prolate spheroid, the cylinder with hemisphomical ends, and the right cylinder, respectively. Although the maximum amplitude actually observed for Eros was larger than 1.2 mag, we believe that the difference may be due to shadowing rather than the overall shape of the asteroid, as explained below. It is immediately apparent from Figure 11 thet the form of the curve for a prolete spheroid is very different than that of Eros. The curve for the right cylinder appears to match Eros well over the range of aspect angles considered, and that for a cyliuder with hemispherical ends matches rather less well.

When the shapes of the computed rotational light curves for the three biaxial figures seen equator-on are compared to the observed light curve of Eros near maximum amplitude, it is found that all three curves fit reasonably well, having broad maxima and narrow sharp minima. However, the rotational light curve for the right cylinder has two-peaked maxima, which is not observed. Therefore, the overall shape of Eros is well matched by a cylinder with rounded ends.

An estimate of the axial ratio of Eros may be made as follows. We consider the effect of shadowing by macroscopic irregularities on

ORIGINAL PAGE IS
OF POOR QUALITY
the side and end faces. When Eros is side-on to Earth, the total cross-sectional area is at or near maximu. fi when side-on to the Sun, the area of shadows visible from Ea is near minimum. It is possible that maximum light occurs between these two positions because, when viewed side-on to Earth, a small axial rotation could result in a greater change in the area of visible shadows than the change in the total cross-sectionsl area. The opposite argument holds at minimum light, where the minimum cross-sectional area and the maximum shalowing have to be considered. Thus the fraction of the total visible area which is due to shadowing by macroscopic irregularities is greater at minimum light than at maximum, and the amplitude of the light curve is thereby increased. Therefore, in order to match the observations well, we require that the amplitude due to an approximating figure be less than that observed. Now, since the calculated curves for either of the cylinders mentioned above can be scaled up or down by increasing or decreasing the axial ratio, an upper limit may be set to the axial ratio. We find that the overall shape of Eros is well matched by a cylinder with rounded ends having an axial ratio which probably does not exceed 2.3:1. This result contrasts with the deductions of previous workers (e.g., Cailliatte, 1949) who considered that the 1.5 -magnitude maximum amplitude frequently observed implies that the figure of Eros has an axial ratio of $4.0: 1$. Obviously, the photometric behavior of Eros cannot be precisely modeled by any completely symmetrical geometrical figure. The primary
and secondary maxima are not equally bright, and their relative brightness changes throughout the apparition. The same is true of the minima. Furthermore, as stated earlier, the time interval between successive maxima and minima changes with time in a complicated manner. Undoubtedly, these idiosyncracies of the observed light curve are the result of irregularities on the surface of Eros. Collisional processes are believed to have been importent in the formation and evolution of asteroids, so a heavily cratered and otherwise irregular surface would not be unexpected for Eros. Such features will cast shadows and therefore have a significant impact on the observed light curve. It is possible, by invoking strategically located craters, to account for most of the departures of the observed amplitude-aspect curves in Figure 11 from the selected model curve. However, it is very doubtful that a unique picture of Eros can be derived in this way.

## APPENDIX

## Magnitude at the occultation of $\kappa$ Geminorum $A$

On 24 January 1975 Eros occulted the 4 th-magnitude star $k$ Gem A. This unique naked-eye event was widely observed in the northeastern United States at about $0^{h} 21^{m}$ U.T., and timings of its duration have led to an estimate of the projected size and shape of Eros. According to $0^{\prime}$ Leary et al. (1975), the data are best fitted by an ellipse measuring $19 \times 7 \mathrm{~km}^{2}$ (preliminary values).

We have determined by interpolation the apparent $V$ magnitude at
the time of the occultation, using dats from the five light curves of 17 Januery through 2 February 1975. The epoch of the secondary minimum immediately preceding the occultation was estimated to be 24 January, $0^{\mathrm{h}} 08^{\mathrm{m}} 35^{\mathrm{s}}$ U.T. (not corrected for light time). The occultation therefore occurred on a steeply rising part of the light curve, some $12^{\mathrm{m}}$ after secondary minimum. Allowing for the variation in the interval between successive secondary minima and taking this interval to be $5^{\mathrm{h}} 16^{\mathrm{m}} 02^{\text {s }}$ on 22 January, we find that the occultation took place at a rotational phase 0.0393 synodic periods after secondary minimum. V magnitudes were then calculated for the same rotational phase on the five light curves mentioned above, and these were interpolated to the occultation time. As an internal check this procedure was repeated using rotational phases measured with respect to the primary minimum and both maxima.
 1275 Jan $24,0^{h} 21^{\mathrm{m}}$ U.T. $V=8.009 \pm 0.012-0.020 /$ minute; $\mathrm{V}(1, \alpha)=11.843 \pm 0.012-0.020 /$ minute; $\mathrm{V}(1,0)=11.63 \pm 0.03-0.020 /$ minute.

The last term indicates the instantaneous rate at which Eros was increasing in brightness. The uncertainty in V and $\mathrm{V}(1, \alpha)$ incorporates estimated errors due to rotational phase determination, interpolation, and observational scatter in the magnitudes, while the error $\mathrm{V}(1,0)$ is larger because of the uncertainty in extrapolating to zero phase (the phes: function due to Gehrels, 1970, was used).

## Geometric Albedo

The geometric albedo $p_{V}$ may be calculated using a formula adapted from Bowell and Zellner (1974):

$$
\log p_{V}=6.244-0.4 V(1,0)-2 \log I_{0}
$$

The apparent dimensions given by O'Leary et al. (1975) indicate a projected area of $104 \mathrm{~km}^{2}$ at the time of the occultation, which is equivalent to a circle of diameter $D_{0}=11.5 \mathrm{~km}$. This leads to $p_{V}=0.29 \pm 0.01$, where the uncertainty reflects that in $V(1,0)$ only. However, a $1-\mathrm{km}$ error in the length of the short axis would change $p_{V}$ by 0.05 , so that the value of $p_{V}$ should be taken as indicative only.

The only other direct estimate of the size of Eros was obtained visually during a series of micrometric measurements by van den Bos and Finsen (1931). According to Watson (1937) their estimate implies a long axis of about 35 km . If we assume an axial ratio of $2.3: 1$, then the short axis measures about 15 km . Consideration of our two cylindrical models leads to maximum cross-sectional areas of $483 \mathrm{~km}^{2}$ (cylinder with hemispherical ands) and $533 \mathrm{~km}^{2}$ (right cylinder). Taking the diameters of the sphezes of equal cross-sectional area to be $D_{0}=24.8$ and 26.0 km and using the absolute magnitude derived in section II, we obtain $\mathrm{p}_{V}=0.139$ and 0.126 , respectively. It must again be stressed that these values are indicative only.

## ACKNOWLEDGEMENTS

We thank Karen Duck for assistance with data reduction. This research was sunported by NASA grant NGR-03-003-001.
van dee Bos, W. H., and Finsen, W. S. (1931). Physical observations of Eros. Astron. Nachr. 241, 329-334.

Bowell, E., and Zellner, B. (1974). Polarizations of asterolds and sitellites. In Planets, Stars and Nebulae Studied with Photopolarimetry (T. Gehrels, Ed.), pp. 381-404. University of Arizona Press, Tucson.

Cailliatte, C. (1949). Sur la figure des planetes. Bull. Astron. 13, 2l-83.

Dunlap, J. L. (1972). Laboratory work on the shape of asteroids. Thesis. University of Arizona, Tucson.

Dunlap, J. L. (1975). Lightcurves and the axis of rotation of 433 Eros. Icarus, this issue.

Gehrels, T. (1970). Photometry of asteroids. In Surfaces and Interiors of Planets and Satellites (A. Dollfus, Ed.), pp. 317-375. Academic Press, London.

O'Leary, B., Marsden, B., Dragon, R., Hansen, E., and McGrath, M. (1975). The occultation of Kappa Geminorum A by 433 Eros on 1975 January 24. Bul1. Amer. Astron. Soc., in press.

Roach, F. E., and Stoddard, L. G. (1938). A photoelectric light-curve of Eros. Astrophys. J. 88, 305-312.

Tiylor, P. C. (1971). Photometric observations and reductions of
lightcurves of asteroids. In Physical Studies of Minor Planets
(T. Gehrels, Ed.), pp. 117-131. NASA SP-267.

ORIGINAL PAuL io
OF POOR QUALITY

Tedesco, E. F. (1975). Icarus, this issue.
Vesely, C. (1971). Summary on orientation of rotetion axes. In Physical Studies of Minor Planets (T. Gehrels, Ed.), pp. 133-140. NASA SP-267.

VeverkE, J. (1971). The physical meaning of phase coefficients. In Physical Studies of Minor Plenets (T. Gehrels, Ed.), pp. 79-90. NASA SP-267.

Watson, F. (1937). The physical nature of Eros. Harvard College Obs. Circ. No. 419.

Wisniewski, W. (1975). Icarus, this issue.
Zellner, B., and Gradie, J. (1975). Polarization of the reflected light of asteroid 433 Eros. Icarus, this issue.

Zellner, B., Wisniewski, W., Andersson, L., and Bowell, E. (1975). Minor planets and related objects. XVIII. UBV photometry and surface composition. Astron. J., in press.

| 1974/5 U.T. | $\begin{aligned} & \text { J.D. }\left(0^{\mathrm{h}} \text { U.T. }\right) \\ & -2442000 \end{aligned}$ | $\begin{aligned} & \text { R.A. } \\ & 1950.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Dec. } \\ & 1950.0 \\ & \hline \end{aligned}$ | Heliocentric distance (A.U.) | Geocentric distance (A.U.) | Phase angle (deg.) | $\begin{aligned} & \text { Light time } \\ & \text { (days) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 Oct | 338.5 | $5^{\mathrm{h}} 30^{\mathrm{m}} 43^{\text {s }}$ | $+50^{\circ} 00^{\prime} .6$ | 1.3307 | 0.5123 | 42.39 | 0.00317 |
| 19 Oct | 339.5 | 53342 | 5016.3 | 1.3276 | 0.5425 | 42.36 | 313 |
| 8 Nov | 359.5 | 63430 | 5440.2 | 1.2659 | 0.4184 | 41.31 | 242 |
| 10 Nov | 361.5 | 64031 | 5500.0 | 1.2600 | 0.4072 | 41.15 | 235 |
| 24 Nov | 375.5 | 71953 | 5631.6 | 1.2214 | 0.3340 | 39.52 | 193 |
| 6 Dec | 387.5 | 74629 | 5624.7 | 1.1923 | 0.2786 | 37.33 | 161 |
| 24 Dec | 405.5 | 80353 | 5217.2 | 1.1581 | 0.2089 | 30.37 | 121 |
| 4 Jan | 417.5 | 80002 | 4553.9 | 1.1439 | 0.1765 | 22.61 | 102 |
| 12 Jan | 424.5 | 75243 | 3842.8 | 1.1372 | 0.1601 | 15.13 | 92 |
| 17 Jan | 429.5 | 74738 | 3310.0 | 1.1346 | 0.1538 | 10.58 | 89 |
| 19 Jan | 431.5 | 74541 | 3046.3 | 1.1339 | 0.1523 | 9.27 | 88 |
| 23 Jan | 435.5 | 74212 | 2547.8 | 1.1332 | 0.1510 | 8.73 | 87 |
| 27 Jan | 439.5 | 73925 | 2044.4 | 1.1332 | 0.1520 | 11.22 | 88 |
| 2 Feb | 445.5 | 73647 | 1326.4 | 1. 1349 | 0.1577 | 17.31 | 91 |
| 12 Feb | 455.5 | 73702 | 313.6 | 1.1416 | 0.1774 | 27.18 | 102 |
| 27 Feb | 470.5 | 74805 | - 631.7 | 1.1607 | 0.2245 | 36.85 | 130 |
| 19 Mar | 490.5 | 81738 | -12 16.2 | 1.2006 | 0.3077 | 42.43 | 0.00178 |

Table II. Comparison stars

| $\begin{gathered} \text { Date } \\ 1974 / 5 \\ \hline \end{gathered}$ | B. D. | $\begin{aligned} & \text { R.A. } \\ & 1950.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Dec. } \\ & 1950.0 \\ & \hline \end{aligned}$ | N | V | B-V | U-B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 Oct |  | $5^{\mathrm{h}} 31^{\mathrm{m}} 54^{\text {s }}$ | $+50^{\circ} 06.5$ | 4 | 11.170 | 0.293 | 0.225 |
| 18 Oct |  | 53122 | 5001.3 | 4 | 10.990 | 0.367 | 0.247 |
| 19 Oct |  | 53432 | 5018.2 | 3 | 11.600 | 0.622 | 0.052 |
| 19 Oct | $+50^{\circ} 1208$ | 53447 | 5020.4 | 4 | 8.422 | 1.105 | 0.862 |
| 8 Nov |  | 63512 | 5437.4 | 2 | 11.033 | 1.006 | 0.681 |
| 8 Nov | $+54^{\circ} 1054$ | 63527 | 5441.6 | 2 | 9.415 | 1.644 | 1.959 |
| 10 Nov |  | 64032 | 5502.4 | 2 | 10.546 | 1.196 | 1.173 |
| 10 Nov | $+55^{\circ} 1112$ | 64018 | 5506.5 | 2 | 9.990 | 0.279 | 0.078 |
| 24 Nov | $+56^{\circ} 1209$ | $7 \quad 2014$ | 5624.3 | 1 | 10.969 | 1.256 | 1.136 |
| 6 Dec | $+56^{\circ} 1241$ | 74705 | 5631.4 | 2 | 8. 343 | 1.663 | 1.909 |
| 6 Dec | $+56^{\circ} 1242$ | 74732 | 5637.3 | 2 | 9.405 | 1.076 | 0.781 |
| 24 Dec | $+52^{\circ} 1278$ | 80327 | 5208.6 | 2 | 8.876 | 0.443 | -0.036 |
| 4 Jan | +46 ${ }^{\circ} 1348$ | 75936 | 4545.3 | 2 | 7.936 | 1.048 | 0.985 |
| 12 Jan | $+38^{\circ} 1836$ | 75159 | 3821.0 | 2 | 8.093 | 1.061 | 0.878 |
| 12 Jan | $+38^{\circ} 1834$ | 75120 | 3814.5 | 2 | 8.374 | 0.665 | 0.212 |
| 17 Jan |  | 74739 | 3244.1 | 2 | 10.438 | 0.639 | 0.204 |
| 19 Jan | $+30^{\circ} 1566$ | 74417 | 3013.6 | 2 | 8.358 | 1.051 | 0.875 |
| 23 Jan | $+26^{\circ} 1633$ | 74105 | 2554.6 | 4 | 5.332 | 1.551 | 1.852 |
| 27 Jan | $+20^{\circ} 1885$ | 74014 | 2014.6 | 2 | 8.230 | -0.054 | -0.499 |
| 2 Feb | $+13^{\circ} 1725$ | 73651 | 1300.5 | 2 | 8.929 | 0.624 | 0.175 |
| 12 Feb |  | 73608 | 300.6 | 3 | 10.095 | 0.885 | 0.600 |
| 27 Feb | - $6^{\circ} 2325$ | 74804 | - 643.0 | 3 | 9.250 | 0.609 | 0.083 |
| 19 Mar | $-11^{\circ} 2321$ | 81823 | -12 16.2 | 4 | 9.810 | 1.246 | 1.221 |


| U.T. | $\mathrm{V}(1,0)$ | U.1. | v (1) | U.T. | V (1, \% | U.t. | V(1, M) | U.t. | $\mathrm{v} 1, \mu$ | |
|---|---|---|---|---|---|---|---|---|---|---|
| 18 October | 1974 | $0^{59} 015$ | 12 R +19 | $09^{h} 4150$ | $12 \% \times 101$ | $08^{\text {h }} 300^{2} 8$ | 115902 | $00^{n} 500^{6}$ | 11 ".us |
|  |  | 0910.5 | 12.399 | 0936.5 | 12.576 | 0836.1 | 12.001 | 09 S3.: | 11, 3 : |
| $00^{6} 300^{2} 5$ | 12 T 75 | 09 17.5 | 12.375 | 0934.2 | 12.533 | 0841.2 | 12,08? | 09 57, | 11.30 |
| 0642.0 | 12.118 | 0923.9 | 12.299 | 0958.4 | 12,500 | 0846.5 | 12.185 | 1001. | 11.313 |
| 0654.1 | 12.179 | 0935.9 | 12.123 | 1006.1 | 12.415 | O8 51.9 | 12.305 | 1010.3 | 11.31 |
| 07 02.2 | 12.195 | 0943.8 | 12.031 | 1011.7 | 12.301 | 0855.8 | 12. 394 | 1014.7 | 1.,4n3 |
| 07.13 .2 | 12.182 | 0953.2 | 11.941 | 1019.2 | 12.144 | 0901.1 | 12.528 | 1020.8 | 1. 4 : 7 |
| 07.21 .3 | 12.139 |  |  | 1023.1 | 12.077 | 0907.1 | 12.674 | 1026.2 | 11.539 |
| 07 33.9 | 12.064 |  |  | 1030.5 | 11.980 | 0911.9 | 12.785 | 10 30, 3 | (1) 61 ? |
| 0741.8 | 12.003 |  |  | 1035.9 | 11.926 | 0916.6 | 12,843 | 1035.6 | 11.784 |
| 0752.4 | 11.934 | 0626.9 | 12.139 | 1043.9 | 11.868 | 0920.2 | 12,865 | $10 \mathrm{3m}, \mathrm{8}$ | 11.857 |
| 0800.0 | 11.886 | 0636.7 | 12.002 | 10 S2.3 | 11.831 | 0926.0 | 12.632 | 1544.3 | 11.935 |
| O8 07.3 | 11.858 | 0646.5 | 11.916 | 10 58.3 | 11.818 | 0930,5 | 12.45 | 1042.3 | 12.138 |
| 0814.4 | 11.851 | 0650.1 | 11.985 | 1106.5 | 11.812 | 0935.3 | 12.245 | 10 54.1 | 12 241 |
| 0822.2 | 11.840 | 0659.8 | 11.86) | 1111.2 | 11.822 | 0940.1 | 12.09 ? | 1058.8 | 12.541 |
| 0832.5 | 11.849 | 0706.4 | 11.879 | 1118.9 | 11.839 | 0946.2 | 11.957 | 1102.1 | 12.672 |
| 0840.4 | 11.854 | 0716.4 | 11.909 | 1124.9 | 11.870 | 0952.8 | 11.80? | $11 \mathrm{om}, 3$ | 12,703 |
| 0848.6 | 11.911 | 0726.9 | 11.965 | 11 32.9 | 11.931 | 09 57.5 | 11. 723 | 1110.6 | 12.6ns |
| 0859.4 | 11.964 | 0729.9 | 11.994 | 1138.7 | 11.983 | 1002.6 | 11.631 | 1114.3 | 12.4)1 |
| 0907.2 | 12.036 | 07.40 .6 | 12.113 | 1146.5 | 12.067 | 1007.1 | 11.598 | 1123.0 | 12.279 |
| 0015.4 | 12. 103 | 0747.6 | 12.191 | i1 50.3 | 12.123 | 10 11.2 | 11.556 | 11 32.0 | 12.073 |
| 0931.2 | 12.247 | 0758.0 | 12. 306 | 1158.1 | 12.218 | 1015.4 | 11.528 | 1131.7 | 11.93 |
| 0941.9 | 12.277 | 0803.3 | 12. 360 | 1204.0 | 12,33i | 1018.5 | 11.522 | 1143.3 | 11.785 |
| 0950.9 | 12.257 | 0809.7 | 12.415 |  |  | 1022.4 | 11.505 | 11.47 .3 | 11.716 |
| 0959.2 | 12.199 | 8820.5 | 12.451 | 6 Dece | 1974 | 1026.4 | 11. 503 | 1152.4 | 11.619 |
| 1010.1 | 12.125 | 0827.4 | 12.448 |  |  | $10 \quad 30.4$ | 11. 509 | 1157.1 | 11.576 |
| 1019.7 | 12.044 | 0837.1 | 12.431 | 0720.8 | 11.789 | 1034.3 | 11.521 | 1201.8 | 11.509 |
| $10 \quad 27.1$ | 11.986 | 0843.3 | 12. 396 | 0728.9 | 11.750 | 1039.4 | 11.550 | 1206.4 | 11.462 |
| 1034.7 | 11.951 | 0852.7 | 12.272 | 0740.3 | 11.728 | 1042.3 | 11.571 | 1211.4 | $11.41{ }^{7}$ |
| 1045.2 | 11.905 | 0903.7 | 12.125 | 0748.1 | 11.746 | 1046.3 | 11.607 | 12.16 .1 | 11.387 |
| 10 \$3.0 | 11.902 | 0910.4 | 12.034 | $07 \quad 55.9$ | 11.788 | 1050.2 | 11.658 | 1221.1 | 11.359 |
| 1102.5 | 11.908 | 0919.4 | 11.953 | 0803.5 | 11.837 | 1054.3 | 11. 720 | 1224.5 | 11. 358 |
| 1110.5 | 11.941 | 0922.3 | 11.934 | 0816.0 | 11.954 | 1058.9 | 11.804 | 1229.2 | 11. 345 |
| 1121.0 | 11.981 | 0928.7 | 11.891 | 0823.6 | 12.047 | 1103.0 | 11.890 | 1234.0 | 11. 341 |
| 1135.9 | 12.044 | 0938.2 | 11.863 | 0831.2 | 12.16? | 1108.9 | 12.039 | 1238.8 | 11.357 |
|  |  | 0945.6 | 11.849 | 0836.2 | 12.244 | 1114.5 | 12.205 | 1243.6 | 11. 381 |
| 19 October | 1974 | 0954.9 | 11.855 | 0843.3 | 12.394 | 1118.8 | 12.360 | 1254.8 | 11.408 |
|  |  | 1003.3 | 11.883 | 0848.5 | 12,492 | 1123.0 | 12.511 |  | 11.446 |
| 0646.5 | 12.286 | 1015.7 | 11.948 | 0855.7 | 12.646 | 1126.9 | 12.668 |  |  |
| 0658.5 | 12.271 | 1018.5 | 11.973 | 0903.0 | 12.822 | 1131.0 | 12.772 | 12 January 1975 |  |
| 0714.5 | 12.125 | 1027.6 | 12.069 | 0908.1 | 12.898 | 1135.3 | 12.812 |  |  |  |
| 0718.4 | 12.090 | 1040.0 | 12.225 | 0915.9 | 12.784 | 1139.9 | 12.782 | 0714.4 | 11.256 |
| 0722.5 | 12.047 | 1049.5 | 12.363 | 0923.3 | 12.992 | 1144.3 | 12.708 | 0719.6 | 11.213 |
| 0731.3 | 11.995 | 11 04.8 | 12.576 | 0931.1 | 12.246 | 1148.4 | 12.628 | 0729.3 | 11.171 |
| 0742.5 | 11.909 | 1113.8 | 12.589 | 0938.6 | 12.065 | 1151.7 | 12.563 | 0734.0 | 11.160 |
| 0750.8 | 11.897 | 1120.0 | 12.541 | 0948.8 | 11.876 | 1155.6 | 12.482 | 0738.4 | 11. 162 |
| 0808.4 | 11.927 | 11.29 .2 | 12,377 | 0956.7 | 11.778 | 1159.7 | 12.405 | 0745.2 | 11.183 |
| 0818.9 08 | 11.958 | 1137.9 | 12.217 | 1006.9 | 11.707 | 1203.7 | 12.320 | 0749.6 | 11.205 |
| 0826.9 | 11.980 | 1144.3 | 12.114 | 1014.1 | 11.686 | 1207.6 | 12.225 | $0^{7} 53.0$ | 11.228 |
| 0838.5 | 12.034 | 1153.3 | 11.992 | 1019.3 | 11.680 | 1213.5 | 12.056 | 0756.8 | 11.261 |
| 0849.2 | 12.079 | 1159.3 | 11.943 | 1026.9 | 11.704 | 1217.8 | 11.960 | 0806.1 | 11.376 |
| 0856.9 | 12.133 | 1208.0 | 11.889 | 1032.2 | 11.747 | 1222.3 | 11.872 | 0810.0 | 11.433 |
| 0900.4 | 12.131 | 1214.6 | 11.864 | 1039.3 | 11.819 | 1226.4 | 11.805 | 0813.2 | 11.488 |
| 0915.0 | 12.185 | 1223.3 | 11.857 | 1046.4 | 11.922 | 1229.4 | 11.767 | 0816.9 | 11.558 |
| 0925.8 | 12.198 | 1229.8 | 11.871 | 1053.5 | 12.047 |  |  | 0829.9 | 11.886 |
| 09 093.3 09 39.6 | 12.230 | 1238.3 | 11.926 | 1058.5 | 12.153 | 4 Jaxuary 1975 |  | 0833.8 | 12.000 |
| 0939.6 | 12.179 |  |  | 1105.7 | 12.321 |  |  | 0836.9 | 12.087 |
| 0947.3 | 12.117 | 24 Noverber 1974 |  | 1112.6 | 12.496 | 0737.2 | 11.436 | 0841.0 | 12.184 |
| 0954.7 | 12.047 |  |  | 1120.0 | 12.654 | 0741.6 | 11.471 | 0845.0 | 12.299 |
| 1005.4 | 11.974 | 0635.9 | 12.134 | 1124.7 | 12.701 | 0746.3 | 11.539 | 0849.4 | 12.332 |
| 1012.8 | 11.925 | 0645.1 | 12.276 | 1132.2 | 12.693 | 0750.7 | 11.595 | 0852.6 | 12. 307 |
| 1021.1 | ${ }_{11.871}$ | 0656.6 | 12.496 | 1139.5 | 12.629 | 0757.9 | 11.716 | 0857.1 | 12.232 |
| 1029.0 | 11.843 | 0704.5 | 12.653 | 11 47,0 | 12.543 | 0802.4 | 11.787 | 0901.3 | 12.153 |
| 1039.8 | 11.808 | 0707.7 | 12.721 | 1157.2 | 12.407 | 0807.7 | 11.850 | 0905.4 | 12.068 |
| 1054.6 | 11.829 | 0716.0 | 12.792 | 1204.5 | 12.238 | 0812.0 | 11.923 | 0909.6 | 11.972 |
| 1101.4 | 11.859 | 0722.4 | 12.714 | 1216.4 | 11.993 | 0816.6 | 12.014 | 0913.7 | 11.868 |
| 1108.8 | 11.889 | 0730.2 | 12.516 | 1223.8 | 11.891 | 0821.1 | 12.116 | 0917.4 | 11.769 |
| 1119.5 | 11.950 | 0733.7 | 12.422 | 1231.0 | 11.816 | 0825.6 | 12.224 | 0920.4 | ${ }_{11}^{11.706}$ |
| 1126.8 | 12.000 | 0741.1 | 12.219 | 1238.0 | 11.773 | 0828.9 | 12.318 | 0924.5 | 11.618 |
| 1133.4 | 12.066 | 0746.8 | 12.105 |  |  | 0833.3 | 12.430 | 0928.3 | 11.548 |
| 1143.5 | 12.178 | 0752.3 | 12.011 | 24 Decenber 1974 |  | 0837.7 | 12.523 | 0931.7 | 11.495 |
| 1150.4 | 12.192 | 0800.5 | 11.904 |  |  | 0842.2 | 12.587 | 0935.5 | 11.441 |
|  |  | 0808.7 | 11.827 | 0712.3 | 11.782 | 0846.5 | 12.613 | 0940.6 | 11. 379 |
| 8 Novenber | 1974 | 0814.5 | 11.798 | 0716.9 | 11.723 | 0850.9 | 12.427 | 0944.5 | 11.338 |
|  |  | 0822.1 | 11.784 | 0721.3 | 11.677 | 0855.0 | 12.256 | 0957.1 | 11.241 |
| 0711.5 | 11.973 | 0830.0 | 11.790 | 0726.5 | 11.634 | 0858.9 | 12.111 | 1001.2 | 11.224 |
| 0726.9 | 11.878 | 0835.6 | 11.811 | 0737.4 | 11.580 | 0903.0 | 11.979 | 1005.2 | 11. 208 |
| $07 \quad 30.4$ | 11.865 | 0843.1 | 11.870 | 0742.5 | 11.559 | 0906.3 | 11.892 | 1008.4 | 11. 208 |
| 0744.7 | 11.879 | 0848.9 | 11.933 | 0749.7 | 11. 559 | 0910.7 | 11.784 | 1012.4 | 11.201 |
| 0751.0 | 11.892 | 0856.4 | 12.028 | a7 55.0 | 11.573 | 0915.1 | ${ }^{11.593}$ | 1116.2 | 11.203 |
| 0759.5 | 11.952 | 0900.5 | 12.095 | \% 58.3 | 11. 593 |  |  |  |  |
| 0813.5 0822.6 | 12.084 | 0908.4 | 12.233 | \% 6.5 .4 | 11.632 | 0924.2 0928.9 | 11.543 11.478 | 1023.6 1027.5 | 11.222 11.240 |
| 0822.6 0829.1 | 12.179 12.249 | $\begin{array}{lll}09 & 11.7 \\ 09 & 19.5\end{array}$ | 12.297 12.438 | us | 11.657 11.721 | 0928.9 0935.0 | 11.478 11.409 | 1027.5 1031.3 | 11.240 11.266 |
| 0836.5 | 12.320 | 0925.1 | 12.529 | ${ }_{08} 20.7$ | 11.793 | 0941.7 | 11.340 | 1035.6 | 11.299 |
| 0850.2 | 12. 399 | 0933.2 | 12.590 | 0827.0 | 11.873 | 0945.9 | 11.318 | 1039.1 | 11.330 |



| 0.7. | $\mathrm{V}(1, n)$ | U.T. | $\mathrm{v}(1, n)$ | u.r. | $\mathrm{v}(1, \ldots)$ | u.t. | $\mathrm{V}(1, n)$ | u.t. | v(1,2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 Fbb . | (t'd.) | $00^{\text {fr }}$ | $1 E=50$ | $00^{6}=f$ | $10.450$ | $0^{h} \operatorname{sen}^{n} \text { ? }$ | 12.578 | - $0^{8} 1083$ | $10^{\text {P/904 }}$ |
| $0^{\text {m }}$ S $\mathrm{ff}_{1}$ | 1f:72 | ${ }_{088} 810.7$ | 11.955 | On ${ }^{80}$ | 11.4.s. |  | 12,416 | 04. 13.1 | 11. 02 |
|  | 11.601 | 0822.6 | 11.65) | 0645.7 | 11.516 | 0802.7 | 12.410 | 04 19.7 | 11. 8 \% |
| O5 57.9 | 11.659 | 0824.5 | 11.863 | 0650.5 | 11.5s: | 0606.5 | 12.428 | 0425.0 | 11. 17 |
| 0602.7 | 11.579 | 0828.5 | 11.894 | O\% 0 | 11.672 | 0610.3 | 12.45 | 04, 0.8 | 11.835 |
| O5 05, 5 | 11.542 | $00^{3} 3.4$ | 11.760 | 0706.3 | 11.781 | O6. 17 | 12.17 | 04, | 11.8. |
| 0608.0 |  | 0833.0 | 11.717 | 0710.8 | 11.85 | 0621.6 | 12, 285 | $045 \%$ | 11.83 |
| ${ }^{\circ} 810.7$ | 11.470 | 083.6 | 11.671 | 0720.2 | 12.035 | 0625.2 | 12.245 | 04.33 .2 | 11.919 |
| 0612.5 | 11.457 | O8 38.4 | 11.650 | 0724.8 | 12.135 | 29.0 | 12.184 | 42.6 | 11.926 |
| (1) | 1.410 | -88 1.6 | 1.1.50\% | 0\% 29.2 | 1,15 | 32.8 | [.147 | 47,3 | 11.943 |
| of 18.5 | 11.397 | 08 4. 8 | i1. 525 | O7 $3 \times .3$ | 1, \% | On ${ }^{\text {or }}$ So. 5 | 12.035 |  | 11.90 \% |
| 0620.7 | 11. 387 | 0816.7 | 11.503 | 07 42.4 | [1. 358 | 064.3 | 12.005 | 0455.4 | 1.929 |
| ${ }^{06} 23.1$ | 11. 371 | 084.9 | 11.478 | 0.40 .6 | 12. 148 | 48,0 | 11.978 | 0 0: 54, 3 | 12.022 |
| O6 27.1 | Ii.35 | ${ }^{\circ} 888.5$ | 1.1.0 | 51.6 | 1, | 31. | 11.938 |  |  |
| 0629.1 | 11. 3 S 5 | os 54.5 | 11. 107 | 0758.8 | 12,205 | ${ }^{\circ} \mathrm{O} 5 \mathrm{O}$ | 11.8. | $\bigcirc 500.3$ | 1. ${ }^{\text {an }}$ |
|  | 11. 330 |  | 11. 109 | 080.1 | 12.119 | ${ }^{07} 002.8$ | 11.850 | os 11. | 12.118 |
| O6 37.0 | 1i. 321 | -3, 03.3 | 11. 12.28 | 088 14.6 | 11.2\% |  |  |  |  |
| 96 37.9 | 11. 519 |  | 11. ${ }^{\text {n }}$ \% | 008 23.5 | 11.815 | 0714.6 | 11.70 | 0522.0 | 1.215 |
| ${ }_{06} 85.6$ | 11.3 . | 0910.9 | 1.1.8s |  | ${ }_{1}^{11.745}$ | 0. 18.5 | 11.75 | 05 26.1 | 12.23 |
| 0645.7 | 11.33 |  |  | 0834.3 | 11.63: | 07.25 .3 | 11.708 | 05 | 1. 2 \% |
| 12, | 11. 113 | kh | 1775 |  | 11.596 | 30.1 | 11.772 |  |  |
| ${ }_{06} 35.5$ | 11. 318 | 0321.5 | 11.677 |  | 11.5:0 | O7 33.9 | ${ }^{11.7788}$ | OS 38.3 | 12.287 |
| 0655.5 | 11. 340 | ${ }^{03} 23.8$ | 11.585 | 27 Feb | 1975 | 0741.5 | 11. 811 | OS 45.6 | 12.291 |
|  |  | 0330.1 | 11.559 |  |  | 45.4 | 11.834 | 05 48.4 | 12.258 |
| 03.2 | 11. 991 | O3, 03 | ${ }_{\text {11. }}^{11.588}$ | O5 31.8 | 12.328 |  | ${ }^{11.8655}$ | os 51.1 | 12.29 |
| 07) 03.2 | 11.403 | 05 515.1 | 11.510 | 0343.7 | 12.244 | 0757.1 | 11.937 | 0588. | 12.197 |
| 07092 | 1.14, 45 |  | 11.513 |  | 12.209 | 0801.2 | 11.982 | 02 | 12.165 |
| 0711.1 | 11.450 | 03558 |  | 035 | 12.17 | 080.3 | 12,200 | 0004.8 | 12.144 |
| of 13.7 | 11.475 | 0402.3 |  | 0400,8 | 12.072 |  | 12.326 | 10.3 | 12.105 |
| 0710.1 | 11. 498 | 0407.7 | 11. 582 |  | 12.034 | 0843.8 | 12.334 | 0613.0 | 12.082 |
| -1 18.9 | ${ }^{11.537}$ | 0412.0 | ${ }^{11.656}$ | 0408.4 | 11.999 | 0847.2 | 12.322 | 0616.5 | 12.059 |
| $\bigcirc{ }^{0} 22.7$ | (11.5856 | O4 422.0 | 11.78.75 | 04 04.68 04.68 | ${ }_{11.908}^{11.99}$ | 08 <br> 0850.5 <br> 85.9 | (12.294 | $\begin{array}{lll}06 & 19.9 \\ 0623.9\end{array}$ | ${ }_{12,008}^{12.059}$ |
| 0724.6 | 11.607 | 0438.5 | 11.930 | 0420.4 | 11.861 | 0857.1 | 12.218 | 26.8 | 11.989 |
| - 07.20 .7 | 11.647 | 04.42 .7 | 11.996 | 04 24,2 | 11.833 | 0900.3 | 12.234 | 06 | 11.973 |
| 0730.8 | 11. 11.68 | O4, 04.85 | ${ }_{12.117}^{12.049}$ |  | 11.770 | 19 M | 1975 |  | ${ }^{11.953}$ |
| 0732.9 | 11.733 | 04 57.2 | 12. 192 | 0435.1 | 11.750 | 19 M |  | 0639.7 | 11.938 |
| -07 35.8 | 11.788 | 0501.5 | 12. 25. | 39.2 | 11.732 | 0245.3 | 12.208 | 0642.1 | 912 |
| 0739.9 | 11. 843 |  | 12.276 | ${ }_{04} 4.47 .2$ | 11.720 |  | ${ }_{12,220}$ | 0645.6 | 11.906 |
| 0741.8 | 11.877 | os 14.5 | 12.243 | 0450.7 | 11.716 | 0256.5 | 12.215 | 0652.2 | 11.885 |
| 97 46.3 | 11.920 | O5 18.9 | 12.189 | 0454.8 | 11.722 | 0259.4 | 12.210 | 0654.9 | 11.889 |
| 0749.5 | 11.999 | OS 28.6 | 12.062 | OS 06.4 | 11.781 | $\begin{array}{ll}0310.5 \\ 03 & 23.2\end{array}$ | 12131 | 0658.7 0701.9 | 11.83 |
| 0751.4 | 12.035 | 0533.7 | ${ }^{11.984}$ |  | 11.815 | 0327.3 | 12.107 | 0706.4 | 11.899 |
| $\bigcirc 755$ | 12.083 | - | 11.838 | O513.9 | 11.850 | $\begin{array}{llll}03 & 3 & 30.7 \\ 03 & 3 & 3\end{array}$ | 12.085 | ${ }^{07} 09.2$ | 11.904 |
| 0758.2 | 12.120 | 0548.2 | ${ }^{11.773}$ | 0521.4 | 11.935 | 0336.5 | 12.066 | 0714.8 | 11.925 |
| - ${ }^{08} 80.1$ | cole | O5 56.8 | 11.648 | 05 25.1 | 11.980 | 0346.8 | 12.013 | 0718.5 | 11.942 |
| 0803.9 | ${ }_{12.167}$ | 0605.6 | 11.561 | OS 32.4 | 12.059 | 055 0350.7 03.6 | (12.989 | O7 07.1 | ${ }^{11.951}$ |
| 08 08 08 08.7 07.8 |  | 06 <br> 06 <br> 06 <br> 06.5 <br> 15.5 | 11. 11.580 |  | 12.123 | 035 56.4 | 11.964 | 0729.5 | 11.996 |
| 0889.8 0808 | 12.111 | 06 0620.5 | (11.462 | -5 $\begin{array}{r}43.0 \\ \hline 0.8 \\ \hline 15.8\end{array}$ | (12.220 | 0359.2 | ${ }^{11.948}$ | 32.8 | 12.028 |
| 0811.5 | 12.082 | 0624.9 | 11.453 | O5 47.8 | 12.336 | O4 06.4 | 11.912 |  |  |

Table IV. Epochs of light-curve maxima and minima

| 1974/5 U.T. | J.D. <br> PRIMARY MAXIMLM <br> (c) -2442000 |  | PRIMARY MINIMM <br> (c) -2442000 |  | SECONDARY MAXIMM <br> (c) -2442000 |  | SECONDARY MINIMM <br> (c) -2442000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 Oct | $338.84542 \pm 139^{\text {a }}$ | 11.831 | $338.90022 \pm 104$ | 12.270 | $338.94844 \pm 69$ | 11.902 | $338.79052 \pm 231^{\text {a }}$ | 12.194 |
| 19 Oct | $339.94199 \pm 347^{\text {a }}$ | 11.808 |  |  | $339.82802 \pm 139^{\text {a }}$ | 11.897 | $339.88613 \pm 347^{\text {a }}$ | 12.195 |
| 8 Nov |  |  |  |  | $359.81378 \pm 116^{\text {a }}$ | 11.865 | $359.87253 \pm 128^{\text {a }}$ | 12.419 |
| 10 Nov | $361.90506 \pm 74$ | 11.849 | $361.96328 \pm 28$ | 12.599 | $361.79044 \pm 139^{\text {a }}$ | 11.869 | $361.84858 \pm 67$ | 12.450 |
|  |  |  |  |  | $362.00966 \pm 64$ |  |  |  |
| 24 Nov | $375.95991 \pm 16$ | 11.812 | $375.79904 \pm 45$ | 12.793 | $375.84672 \pm 126$ | 11.784 | $375.89953 \pm 53$ | 12.602 |
| 6 Dec | $387.81705 \pm 16$ | 11.728 | $387.87951 \pm 8$ | 12.903 | $387.92775 \pm 45$ | 11.680 | $387.97655 \pm 64$ | 12.709 |
| 24 Dec | $405.82359 \pm 130$ | 11.559 | $405.88685 \pm 59$ | 12.868 | $405.93376 \pm 54$ | 11.503 | $405.98172 \pm 41$ | 12.813 |
| 4 Jan | $417.01758 \pm 69$ | 11.341 | $416.86413 \pm 9$ | 12.620 | $416.91295 \pm 64$ | 11.304 | $416.96052 \pm 32$ | 12.709 |
| 12 Jan | $424.92314 \pm 89$ | 11.201 | $424.98352 \pm 8$ | 12.385 | $424.81613 \pm$ fna | 11.160 | $424.86619 \pm 6$ | 12.332 |
| 17 Jan | $429.97174 \pm 29$ | 11.079 | $430.03055 \pm 69^{\text {a }}$ | 12.201 | $429.86600 \pm 116$ | 11.655 | $429.91818 \pm 21$ | 12.077 |
| 19 Jan | $431.94609 \pm 140$ | 11.067 | $431.78700 \pm 7$ | 12.120 | $431.83969 \pm 47$ | 11.024 | $431.20508 \pm 29$ | 11.998 |
| 23 Jan | $435.89905 \pm 101$ | 11.070 | $435.73716 \pm 9$ | 12.024 | $435.79091 \pm 42$ | 11.025 | $435.84668 \pm 9$ | 11.978 |
|  |  |  | $435.95737 \pm 14^{\text {a }}$ | 12.017 |  |  |  |  |
| 27 Jan |  |  | $439.68883 \pm 5$ | 12.063 | $439.74255 \pm 50$ | 11.122 | $439.79698 \pm 31$ | 12.115 |

Table IV. (continued)

| 1974/5 U.T. | PRIMARY MAXIMM |  | PRIMARY MINIMM | $V(1, \alpha)$ | SECONDARY MAX $\text { J.D. (c) }-2442000$ $\pm \varepsilon \times 10^{5}$ | IM: V(1, $)$ | SECONDARY MI <br> J.D. (c) -244200 <br> $\pm \varepsilon \times 10^{5}$ | V(1, $\frac{12.208}{}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 Feb | $445.77662 \pm 17$ | 11.319 | $445.83543 \pm 9$ | 12.167 | $445.67008 \pm 22$ | 11.253 | $445.72237 \pm 5$ | 12.208 |
|  |  |  |  | 12.283 | $455.76720 \pm 37$ | 11.450 | $455.82056 \pm 39$ | 12.364 |
| 12 Feb | $455.65659 \pm 6$ | 11.510 | $455.71225 \pm 6$ | 12.283 |  |  | $962 \pm$ | 12.443 |
| 27 Feb | $470.80369 \pm 41$ | 11.757 | $470.86394 \pm 95$ | 12.354 | . 70007 |  |  |  |
|  |  |  | $490.62030 \pm 115$ | 12.220 | $490.67972 \pm 53$ | 11.878 |  |  |
| 19 Mar | $490.78105 \pm 190$ | 11.88 | $490.62030=11$ |  |  |  |  |  |

[^1]FIGURE CAPTIONS


#### Abstract

Figure 1. V light curves of 433 Eros. The crosses are the actual observed points. The curves were drawn freehand through the same points shifted to the left and right by amounts equal to Eros' mean synodic period. The time of primary maximum coincides with the midpoint of the abscissa. Magnitudes are corrected to unit heliocentric and geocentric distances.


Figure 2. Caption as Figure 1.

Figure 3. Caption as Figure 1.

Figure 4. Caption as Figure 1.

Figure 5. Brightness of Eros at the primary maximum (PM) and secondary maximum (SM) of the light curve plotted as a function of solar phase angle. Filled circles denote points obtained prior to opposition; open sircles are observations after opposition. The straight lines were fitted to the data by least squares.

Figure 6. Primary (filled circles) and secondary (filled squares) amplitude of Eros' light curve plotted against Julian date.

Figure 7. Observed V magnitudes and color indices of Eros from December 24, 1974 , plotted as a function of Universal Time. The observed $V$ magnitudes of the comparison star are also given as an indication of the photometric quality of the night. Note that the measurements of Eros' brightness are plotted on a compressed scale.

Figure 8. Observed V magnitudes and color indices of Eros from February 12, 1975, plotted as a function of Universal Time. The observed $V$ magnitudes of the comparison star are also given as an indication of the photometric quality $\mathrm{e}_{\hat{i}}$ the night. Note that the measurements of Eros' brightness are plotted on a compressed scale.

Figure 9. The $\mathrm{b}-\mathrm{V}$ color index of Eros as a function of solar phase angle. The filled circles denote the present observations from Lowell. The circled crosses are observations by Dunlap (1975) and Wisneiwski (1975) from Tucson, while the barred circles refer to measurements by Tedesco (1975) from Las Cruces. The straight line was fitted by least squares to the Lowell data.

Figure 10. The U-B color index of Eros as a function of solar phase angle. The filled circles denote the present observations from Lowell. The circled crosses are observations by Dunlap (1975) and Wisneiwski (1975) from Tucson, while the barred circles refer to measurements by Tedesco (1975) from Las Cruces. The straight line was fitted by least squares to the Lowell data.

Figure 1i. Primary (circles) and secondary (squares) amplitude of the light curve of Eros plotted as a function of aspect $\psi$ (lover ordinate) and Julian date (upper ordinate). Filled symbols pertain to $\psi>90^{\circ}$, and open symbols to $\psi<90^{\circ}$. Computed amplitudeaspect curves are identified as follows: PS prolate spheroid, CH cylinder with hemispherical ends, and RC right cylinder.






Millis et al. Figure 5








[^0]:    ${ }^{1}$ Only $V$ measurements are available for the night of 8 November.

[^1]:    ${ }^{\text {a }}$ Epoch deternined from $V$ filter record only.

